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ABSTRACT

In order to determine the flexibility of pile foundations, appropiate models that include
the soil-pile interaction mechanism should be considered. These types of models are
usually complex and involve a high computational cost, making it difficult to transfer
knowledge to other applications. In the literature, simplified expressions (e.g. [1, 2]) have
been proposed to evaluate the stiffness of the piles in an efficient way, admitting some
uncertainty in the result. The objective of this work is to build a surrogate model based
on artificial neural networks (ANN) capable of predicting the stiffness of a pile foundation.

A dataset is generated to train the ANN. This synthetic data include the variables that
define the foundation and the surrounding soil, and the foundation stiffness, which is
evaluated through a previously developed continuous formulation [3]. Comparing the
ANN predictions with the results obtained through the numerical tool, its potential to
act as surrogate model is observed. The proposed ANN can be used to efficiently estimate
the flexibility of pile foundation, without a significant loss of accuracy with respect to
rigorous soil-pile interaction models.

This work has been performed within financial support from research project PID2020-
120102RB-I00, funded by the Agencial Estatal de Investigación of Spain, MCIN/AEI/
10.13039/501100011033.
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Introduction

Motivation

Structural perspective

Interest in introducing soil-structure interaction in a more
rigorous way, instead of approximate methods

Suitability of deep foundations for structures subject to higher
loads and on less resistant soils

Computational perspective

Relative high computational cost procedure

High development of Machine learning techniques in recent years
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Introduction

Aims and objectives

Develop a surrogate model based on ANN capable of estimating the
stiffness of a pile in a soil with variable modulus of elasticity
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Methodology

Problem definition
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Methodology

Problem definition - Variables

Case definition

Pile length: L

Pile diameter: D

Pile thickness: t

Young’s modulus of the pile: Ep

Poisson’s ratio of the pile: νp

Reference Young’s modulus of the soil: Es,ref

Relative top soil stiffness: γs

Variation coefficient soil stiffness: ns

Poisson’s ratio of the soile: νs
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KHH

KHθ

Kθθ

Kv

Es (z) = Es,ref

(
γ

1/ns
s +

(
1 − γ

1/ns
s

) z

Lp

)2ns

Román Quevedo-Reina et al. (SIANI) September 13, 2022 8 / 21



Methodology

Problem definition - Variables

Case definition

Pile length: L

Pile diameter: D

Pile thickness: t

Young’s modulus of the pile: Ep

Poisson’s ratio of the pile: νp

Reference Young’s modulus of the soil: Es,ref

Relative top soil stiffness: γs

Variation coefficient soil stiffness: ns

Poisson’s ratio of the soile: νs

Stiffness

KHH

KHθ

Kθθ

Kv

Es (z) = Es,ref

(
γ

1/ns
s +

(
1 − γ

1/ns
s

) z

Lp

)2ns

Román Quevedo-Reina et al. (SIANI) September 13, 2022 8 / 21



Methodology

Problem definition - Dimensionless variables

Case definition

a1 = L
D

[0,100]

a2 = 1− 2t
D

[0,1]

a3 = Ep

Es,ref
(1− a4

2) [10,50000]

a4 = νp [0.15,0.35]

a5 = νs [0.15,0.5]

a6 = ns [0,1]

a7 = γs [0,1]

Stiffness

b1 = KHH

Es,ref D

b2 = KHθ

Es,ref D2

b3 = Kθθ
Es,ref D3

b4 = Kv

Es,ref D
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Methodology

Dataset generation

Input data generation

Generation of uniform random data between limits of
dimensionless variables

Transformation to the problem with dimension

Output data generation - Structural model

SSI is obtained from a continuum model, based in the integral
formulation of pile-soil interaction with Green’s functions of the
layered halfspace

Transformation to the dimensionless variables
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Methodology

Surrogate model generation

Surrogate model

Define number of hidden layers

Define number of neurons per hidden layers

Train model using the train dataset

MSE loss function: Loss = 1
N

∑N
i=1 (yi − ŷi)

2

Ensemble model: combining independent ANNs
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Results

Dataset information

Size

Train dataset: 200.000 cases

Test dataset: 150.000 cases

Architectures checked

Randomly generate between:

Number of hidden layers: 2-5

Number of neuron per hidden layer: 50-150

Performance evaluation

Percentiles of relative error in absolute value |Er |:

|Er | =

∣∣∣∣∣ K̂ii − Kii

Kii

∣∣∣∣∣
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Results

Architecture selection
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Results

Ensemble model performance
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Results

Error distribution - KHH
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Results

Error distribution - KHθ
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Results

Error distribution - Kθθ
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Results

Error distribution - Kv
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Conclusions

Conclusions

Architecture

A minimum statistical study is required before defining the
surrogate model

Surrogate model evaluation

With the ensemble model, 99% of predictions have errors less
than 6%

The error is not homogeneously distributed over the search
space, it increases where the value of the variable decreases
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