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Abstract8

Piles and suction caissons are the most common foundation solutions for fixed Offshore Wind Turbines9

at intermediate water depths. They are generally used as a single element, presenting large diameters and10

short aspect ratios. These specific dimensions drastically differ from the ones of classical applications (off-11

shore platforms, bridges, tall buildings etc.). Thus, in this paper the validity of their modelling as beam12

elements for the particular problem of OWT is revised. The results of a soil-beam model, based on the integral13

Reciprocity Theorem in Elastodynamics and specific Green’s functions for the layered half-space for the soil14

behaviour coupled with Timoshenko’s beam Finite Elements, are benchmarked against the ones of a soil-shell15

model, based on Boundary Elements for the soil coupled with shell Finite Elements. The comparative study16

is conducted in terms of foundation characterization variables (impedance functions and kinematic interaction17

factors). Their influence on the OWT seismic response is also studied through a substructuring procedure.18

From the results, some expressions for determining the applicability range of the beam simplification are pro-19

posed as functions of the relative foundation-soil stiffness ratio. It is observed that this applicability range20

goes beyond that the one commonly considered.21
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1 Introduction38

Pile and suction caisson foundations (also known as buckets, suction piles or suction anchors depending on39

the context) are being used as foundations of fixed Offshore Wind Turbines (OWT). Such solutions are being40

considered at sites with shallow (10 to 30 meters) and intermediate water depths (30 to 60 meters) with sin-41

gle (monopile or monobucket) or multiple foundation arrangements depending on both water depth and soil42

properties.43

As wind turbines becomes larger, the required piles and suction caissons becomes bigger in diameter: up44

to 8 meters for monopiles (XXL monopiles), up to 30 meters for caissons [Cotter, 2009], and even bigger for45

shallow composite caissons with internal skirts (see e.g. [Jia et al., 2018]). Such diameters are much bigger46

than diameters used in other more classical projects (gas/oil platforms, bridges, buildings, etcetera), and there-47

fore the use of models traditionally considered should be taken with care. The length L to diameter D ratios48

ranges are 3 < L/D < 10 for monopiles and 1 < L/D < 6 for suction caissons [Houlsby and Byrne, 2005a,49

Houlsby and Byrne, 2005b]. The buried part of both piles and caissons are constituted by steel shells of thick-50

ness around t/D∼ 0.01 (pile shaft) for monopiles and t/D∼ 0.001 (caisson skirt) for suction caissons.51

The complete design of an OWT is a complex task which should fulfil many requirements [DNV, 2014]. Al-52

though rough designs can be obtained from simplified procedures at early stages, see e.g. [Arany et al., 2017],53

final designs should be defined after using an integrated optimization procedure which guarantees a safe and54

economical solution, see e.g. [Ashuri et al., 2014]. In this sense, it is of fundamental importance an appropriate55

modelling which should also be computationally efficient due to the many evaluations needed during the de-56

sign process. In the case of foundation modelling, recent works [Bhattacharya et al., 2013, Bordón et al., 2019,57

Page et al., 2019], have highlighted its importance particularly for the prediction of first and second natural58

frequencies, which are relevant for performing the crucial fatigue analyses. In the case of seismic analyses,59

the frequency range usually goes far beyond the second natural frequency. The use of convenient simplifying60

hypotheses allows adopting simpler and cheaper models (ideally via closed-form formulae or calibrated fast61

models) at initial steps, whereas more rigorous, complex and detailed models should be considered at the final62

stages.63

The present paper is concerned with the modelling of big diameter and short piles and suction caissons64

for seismic analyses of OWT supported by a single foundation element (monopile or monobucket). The focus65

is put on assessing the adequacy of different simplifying hypothesis which allow the use of more elementary66

models from which results are more easily obtained. To this end, a previously developed soil-beam coupled67

model [Álamo et al., 2016] is compared against a rigorous soil-shell model [Bordón et al., 2017]. The former68
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is a model which reduces the soil-structure interaction to a line (pile axis), and greatly reduces the number69

of degrees of freedom. The pile itself is modelled with Timoshenko finite elements, and the soil response is70

included via Green’s function for an arbitrary horizontally layered half-space, which avoid the discretisation71

of the free-surface and the layer interfaces, i.e. only pile axis nodes are present. The latter model reduces the72

soil-structure interaction to the shell mid-surface, which leads to a rigorous and general interaction model but73

it is also computationally costlier. The comparative study is performed in terms of impedances and kinematic74

interaction factors. In addition to this, results in terms of OWT variables are also compared in order to evaluate to75

what extent the differences in the foundation modelling are transmitted to the whole tower-supporting structure-76

foundation system.77

The use of some kind of one-dimensional reduction, i.e. beam-like models, for foundation modelling is78

quite advantageous for obvious mathematical and computational reasons. The key of such models is how79

soil-structure interaction is considered. Pioneering works take the rigorous Mindlin’s solution and integrate80

it along the pile axis or pile shaft under certain assumptions (see e.g. [Jiménez-Salas and Belzunce, 1965,81

Thurman and D’Appolonia, 1965, Poulos and Davis, 1968]). An alternative approach is the well-known Win-82

kler model, where distributed springs and dashpots are connected along the pile axis [Novak et al., 1978, Gazetas and Dobry, 1984].83

Advanced approaches use some Green’s function under point or ring loading to introduce the soil response,84

and then this is coupled to beam finite elements in different ways [Kaynia and Kausel, 1982, Coda et al., 1999,85

Almeida and de Paiva, 2004, Padrón et al., 2007]. The soil-beam model used in this paper extends [Padrón et al., 2007]86

by considering an arbitrary horizontally layered half-space and Timoshenko finite elements. The aim of the87

present work is to study to what extent this soil-beam model, initially developed for pile foundations, is able to88

reproduce soil-structure interaction (impedances and kinematic interaction factors) for length to diameter ratios89

as low as 1, i.e. suction caissons.90

The paper is organized as follows. First, Section 2 presents the two different foundation models together91

with the substructuring model used to compute the OWT system response. Then, the comparison between the92

beam and shell models is conducted along the different parts of Section 3. The comparison starts in terms of93

the foundation response: static (Sec. 3.1) and dynamic (Sec. 3.2) stiffness , and kinematic interaction factors94

(Sec. 3.3). Then, some expressions determining the upper frequencies below which the beam model accurately95

reproduces the foundation response are proposed in Sec. 3.4. The final part of the comparison, in terms of96

OWT variables, is done through the application example presented in Sec. 3.5. The paper ends listing the main97

conclusions drawn from the study in Section 4.98
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Figure 1: Problem layout and substructuring model

2 Methodology99

2.1 Substructuring model100

The problem at hand is summarized in Fig. 1: an Offshore Wind Turbine connected to a submerged structure101

founded on a large diameter and relatively short monopile or suction caisson subjected to vertically-propagating102

S waves.103

A two-dimensional (lateral behaviour) substructuring model is used for modelling the OWT dynamics. It104

comprises a simple concentrated mass at the hub representing the Rotor-Nacelle-Assembly (RNA), a sufficient105

number of Euler-Bernoulli beam elements for taking into account the conical tower and the submerged part.106

The foundation dynamics is synthesized via frequency dependent springs and dashpots (impedance functions)107

connected to the submerged part base. The foundation energy filtering when impinged by a seismic action (ver-108

tically incident shear waves) is taken into account via kinematic interaction factors. An adequate representation109

of both impedances and kinematic interaction factors is vital for the study of OWT modal and seismic behaviour.110

The impedance functions relate the forces and moments and the displacements and rotations of the foun-111

dation at the mudline level. They are frequency-dependent complex functions whose real and imaginary parts112

represent respectively the stiffness and damping characteristics of the foundation. Given that the study focuses113

on the lateral behaviour, only horizontal KH , rocking KR and sway-rocking cross-coupling KHR impedance func-114
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tions are considered in the substructuring formulation. However, the vertical stiffness term KV is also analysed115

in this work when studying the foundation-only response.116

The kinematic interaction factors represent the filtering effects of the foundation, and they are computed as117

the ratio between the displacement or rotation at the foundation and the free-field motion at the mudline. The118

translational and rotational kinematic interaction factors are respectively denoted as Iu and Iθ .119

More details about the methodologies (soil-shell or soil-beam) used to evaluate the impedance functions and120

kinematic interaction factors are given in next sections. In both models, a time harmonic analysis at circular121

frequency ω is considered, and the soil is assumed to be a homogeneous linear elastic solid with following122

properties: shear modulus Gs, Poisson’s ratio νs, density ρs and hysteretic damping ratio ξs; being the complex123

effective shear modulus to be used G∗s = Gs(1+ i2ξs).124

The governing equations in the frequency-domain that are used to obtain the system response can be written125

as:126


 Kss Ksb

Kbs Kbb +Kf

−ω
2

 Mss Msb

Mbs Mbb



 us

ub

=

 0

Fb

 (1)

where u is the vector containing nodal in-plane lateral displacements and rotations, K and M are the stiffness127

and mass matrices of the system obtained by assembling the elementary ones, the indexes distinguish between128

all structural nodes (s) and the base (mudline level) one (b), K f is the impedance matrix of the foundation, and129

Fb is the force and moment acting at the base of the structure due to the seismic excitation. This force vector130

can be computed from the impedance matrix and kinematic interaction factors as:131

Fb =
[
Kf
] Iu

Iθ

 (2)

For comparison purposes, the response of the system neglecting Soil-Structure Interaction (SSI) effects is

also considered, i.e. rigid base assumption. In this case, the free field motion u f f is directly introduced at the

mudline node of the superstructure, while restricting its rotation. This simplification reduces Eq. (1) into:

(
Kss−ω

2Mss)us =−
(

Ksb−ω
2Msb

)
ub, being: ub =

 1

0

u f f (3)
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2.2 Soil-shell model132

The monopile shaft and the suction caisson skirt are topologically similar, and the only differences are the133

dimensions of the foundation element. In both cases the thickness to diameter ratios t/D are well below 5%,134

being smaller in the case of suction caissons skirts (typically t/D ∼ 0.001) than in the case of monopile shafts135

(typically t/D ∼ 0.01). The consideration of a purely continuum three-dimensional solid model for the soil-136

foundation system is therefore unnatural and overly complex. Instead, the monopile shaft or suction caisson skirt137

is more appropriately modeled as a shell, leading to a mixed dimensional model which considerably reduces the138

required number of degrees of freedom.139

Such a model has been developed by the Authors [Bordón et al., 2017] via a BEM-FEM approach which140

considers the interaction between the foundation and the soil as the interaction of a shell (FEM) and the sur-141

rounding soil (BEM), see Fig. 2. The main hypothesis of this model is thus the reduction of soil-shell interaction142

to the mid-surface of the shell. The present model is fully described for the case of Biot’s poroelastic soils in143

[Bordón et al., 2017], but a brief description of the this model for an elastic soil is outlined below.144

The soil domain Ωs is discretized by using the BEM, which is based on the use of Boundary Integral

Equations (BIE) relating displacements uk and tractions tk throughout its boundary Γ = ∂Ωs. The boundary Γ

consists of two parts: free-surface boundary Γfs, and shell mid-surface Γshm considered as a crack-like boundary

(Γshm = Γ
+
shm +Γ

−
shm). The Singular BIE is used for collocating along the free-surface Γfs [Domı́nguez, 1993]:

ci
lkui

k +
∫
Γ

t∗lkuk dΓ =
∫
Γ

u∗lktk dΓ (4)

where l,k = 1,2,3 and the Einstein summation convention is implied. The tensor ci
lk is the free-term at the col-

location point, ui
k is the displacement at the collocation point, and u∗lk and t∗lk are the elastodynamic fundamental

solutions in terms of displacements and tractions respectively. The Dual (Singular and Hypersingular) BIEs are

used for collocating on the shell mid-surface Γshm:

1
2

(
ui+

l +ui−
l

)
+
∫
Γ

t∗lkuk dΓ =
∫
Γ

u∗lktk dΓ (5)

1
2

(
t i+
l − t i−

l

)
+
∫
Γ

s∗lkuk dΓ =
∫
Γ

d∗lktk dΓ (6)

where ui+
k , t i+

k and ui−
k , t i−

k are displacements and tractions at the collocation point along respectively the pos-145

itive and negative crack faces, and d∗lk and s∗lk are obtained from the differentiation of u∗lk and t∗lk (see e.g.146
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[Domı́nguez et al., 2000]). In Eqs. (5-6), it has been assumed that the collocation point xi is located at a smooth147

boundary point (Γshm
(
xi
)
∈ C 1) leading to the 1/2 factor present in them. This assumption is related to the148

required use of C 1 geometric continuity at collocation points for Hypersingular BIEs. In order to overcome149

this, the Multiple Collocation Approach (MCA) [Ariza and Domı́nguez, 2002] is used when collocating at a150

crack boundary point. Standard quadratic triangular (6 nodes) and quadrilateral (9 nodes) boundary elements151

are considered for the discretization.152

The shell region Ωsh is discretized by using the FEM. Shell finite elements based on the degeneration from

the three-dimensional solid are considered [Ahmad et al., 1970]. The shear and membrane locking phenomena

related to these elements are overcome by using the Mixed Interpolation of Tensorial Components (MITC)

proposed by Bathe and co-workers. The MITC9 shell finite element [Bucalem and Bathe, 1993] is used in this

work. The equilibrium equation for a given shell finite element l can be written as:

K̃(l)a(l)−Q(l)t(l) = f(l) (7)

where K̃(l) = K(l)−ω2M(l) is the resulting time harmonic stiffness matrix, a(l) is the vector of nodal displace-153

ments and rotations, Q(l) is the matrix transferring distributed mid-surface load t(l) to nodal loads, and f(l) is the154

vector of equilibrating nodal forces.155

A conforming mesh between the crack-like boundary and the shell mid-surface is considered. Then, the

coupling is performed by imposing perfectly welding conditions through the following compatibility and equi-

librium between shell finite element and crack-like boundary:

u+k = u−k = ul
k (8a)

t+k + t−k + t l
k = 0 (8b)

where ul
k denotes the shell displacements and t l

k the distributed mid-surface shell load.156

The seismic input is included in the formulation by following the classical decomposition of the total field

into the superposition of the incident field (produced by the impinging seismic excitation) and the scattered field

(produced by the foundation), see e.g. [Domı́nguez, 1993]:

utot
k = uin

k +usc
k (9a)

t tot
k = t in

k + tsc
k (9b)
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dual boundary elements

coupled to

shell finite elements

free-surface boundary elements

line load elements

coupled to

beam finite elements

Full-space

fundamental solution

Half-space

Green's function

(b) (c)(a)

Figure 2: Foundation configuration and its modelling: (a) steel hollow pile in homogeneous half-space, (b)
DBEM-FEM model [Bordón et al., 2017] (soil-shell interaction), (c) Integral model [Álamo et al., 2016] (soil-
beam interaction)

Since the displacements and tractions present in the BIEs have to be evanescent, they are substituted by the

scattered field, which, under the previous assumption, is equivalent to subtracting the incident field from the

total field. The considered incident field is a simple vertically incident shear wave, which has the following

non-zero displacements and tractions:

uin
1 =

1
2

(
e−iksx3 + eiksx3

)
(10a)

t in
1 = Gsuin

1,3n3 (10b)

t in
3 = Gsuin

1,3n1 (10c)

where ks = ω/cs is the S wavenumber, cs =
√

G∗s/ρs is the shear wave velocity, n j is the unit normal at the157

boundary point, and eiωt has been omitted for brevity.158

2.3 Soil-beam model159

For a further reduction in the number of degrees of freedom of the problem, the monopile shaft or suction160

caisson skirt can be simplified to a unidimensional beam element. By doing so, the soil-foundation interface161

is concentrated into the beam axis and the behaviour at each point of the foundation element is defined by the162

cross-section displacements and rotations and the resultant of the interaction tractions along the ring. Evidently,163
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this kind of model is not able to capture the local effects produced at the soil-shell interface, but they can164

accurately approximate the global response of the foundation (especially for medium-to-large aspect ratios).165

A numerical model with these features was proposed by the Authors in a previous work [Álamo et al., 2016]166

for the analysis of pile foundations. In addition to the reduction in the number of degrees of freedom achieved167

by the omission of the soil-shell interface, the developed model makes use of Green’s functions for the layered168

half space instead of the previous full-space fundamental solution. Thus, the discretization of the soil free-169

surface and any strata interface is avoided as the Green’s functions already satisfy the boundary conditions of170

those contours. As result, an efficient numerical model is obtained in which the only variables correspond to171

the mid-line of the foundation element. In the following, the basis of the model formulation are outlined. For a172

more detailed description, the original work [Álamo et al., 2016] is referred.173

The soil region Ωs is assumed to be formed by, in general, a group of horizontal layers overlying a half space.174

The presence of the foundation element is represented through a load line Γb over which the distributed soil-175

foundation interaction forces act, being these the only body forces in the soil domain. Due to the treatment of the176

foundation as a load line, the only boundary of the soil domain correspond to the free-surface Γfs. Considering177

that its zero-traction boundary condition is already satisfied by both the Green’s functions and the unknown178

state, the Singular BIE for internal points of the soil domain can be reduced to:179

ui
l =

∫
Γb

ũ∗lkqk dΓb (11)

where ũ∗lk is the displacement Green’s function for the layered half space proposed by Pak and Guzina180

[Pak and Guzina, 2002] and qk are the distributed interaction forces acting over the soil. In order to numerically181

evaluate the line integral, classic lineal (2 nodes) elements are considered. Also, a particular non-nodal colloca-182

tion strategy over four points of the fictitious soil-shell interface is required in order to avoid the singularity of183

the Green’s function (see [Álamo et al., 2016] for more details).184

The finite element modelling of the foundation piece is done by using two-noded beam elements. Cubic and

quadratic shape functions that satisfy the Timoshenko’s beam static equation [Friedman and Kosmatka, 1993]

are used for the lateral behaviour, while linear shape functions are used to model the distributed interaction

forces and axial displacements. The equilibrium equation for a given beam element l can be written as:

K̃(l)a(l)−Q(l)q(l) = f(l) (12)
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Note that the terms of this equation are the beam-counterparts of the ones presented in Eq. (7), being q(l) the185

vector defining the nodal values of the distributed interaction forces acting over the foundation element.186

Conforming meshes are considered to discretize the soil load line and the foundation element. Thus, the

coupling between both regions can be easily done by, again, imposing compatibility and equilibrium conditions

in terms of displacements and interaction forces, respectively:

uk = ul
k (13a)

qk +ql
k = 0 (13b)

where ul
k denotes the beam displacements and ql

k the distributed interaction forces acting over the beam.187

Finally, and following the same strategy than in the previous soil-shell model, the seismic excitation is188

introduced by superposing the incident and scattered fields. Note that, owing to the reduced expression of the189

Singular BIE, in the soil-beam model only the displacement terms of the incident field are necessary.190

3 Results and discussion191

In this section, a comprehensive comparative study between results from both models is given. It includes192

the necessary ingredients for comparing the foundation characterization (impedances and kinematic interaction193

factors) as well as the final OWT variables of interest (bending moments, shear forces, displacements and194

rotations).195

The study covers the following parameters: length to diameter ratio: L/D = {1, . . . ,10}, thickness to di-196

ameter ratio: t/D = {0.001,0.01,0.02}, and foundation shear modulus to soil shear modulus ratio: Gf/Gs =197

{1000,4000,16000}.198

For this class of foundations in homogeneous soils this set of parameters completely defines the problem.199

Nonetheless, Doherty et al. [Doherty et al., 2005] found that the relative stiffness between the foundation lat-200

eral shell (bucket skirt or pile shaft) and the soil can effectively be synthesized via a dimensionless parameter201

JDoherty = (Eft)/(GsR) which relates shell membrane stiffness and soil stiffness (Ef is the Young’s modulus of202

the foundation and R is the radius of the foundation cross-section). It allows an approximate but useful reduc-203

tion of the number of defining parameters. For convenience’s sake, this dimensionless parameter is defined204

as J = (Gft)/(GsD) in the present paper, which differs from the original by the factor JDoherty/J = 4(1+ νf)205

(constant since νf = 0.25 in all cases). Although the work of Doherty et al. [Doherty et al., 2005] is limited to206

static stiffnesses, it is shown in Appendix A that, in general, J remains as a useful parameter in dynamics for207
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frequencies ao = f D/cs < 0.3 and t/D≤ 0.05.208

The rest of dimensionless parameters that define the studied problems are: hysteretic damping ratios of209

foundation ξf = 2% and soil ξs = 5% materials, foundation soil density ratio ρf/ρs = 3.9, and soil Poisson’s210

ratio νs = 0.49 (saturated soil).211

3.1 Static stiffnesses212

Static stiffnesses are relevant for the calculation of the fundamental frequency of OWTs since it is usually small,213

typically f1 ∼ 0.3 Hz [Kaynia, 2018]. For seismic analyses, however, the use of static stiffnesses is generally214

not recommended.215

Fig. 3 shows the vertical, horizontal, rocking and sway-rocking cross-coupling stiffness components for216

most of the cases studied. One case per t/D has been removed since they have similar values of J (and similar217

graphs) to other cases. This way, the stiffness components are distributed along columns, and the relative218

stiffnesses between foundation and soil are distributed along rows. Each graph shows L/D in abscissas, and219

contains the results from both models. In addition to the aforementioned Poisson’s ratio νs = 0.49 (saturated220

soil), a value of νs = 0.3 has been also considered in this section because the soil is expected to behave more221

similar to the drained solid in the static regime. However, the influence of the Poisson’s ratio in the comparison222

between the two models is negligible. The beam model leads to similar results to the shell model except for very223

small values of J. This phenomenon is reasonable since the validity of the beam–soil continua is kept as long as224

the foundation behaves as a structural member, which happens when there exists stiffness contrast between this225

element and the soil. On the other hand, the applicability of the beam model regarding the length to diameter226

ratio (L/D) is surprisingly good even at L/D = 1.227

In order to give a measure of the fidelity of the soil-beam model, the relative error between both models is228

given in Fig. 4. Each graph has now the parameter J in abscissas, so that all different cases of t/D and Gf/Gs229

are represented. Each length to diameter ratio is represented using a different color: L/D = 2 (black), L/D = 4230

(red), L/D = 6 (blue), L/D = 8 (green) and L/D = 10 (orange); and each thickness to diameter ratio is shown231

with a different point type: t/D = 0.001 (plus), t/D = 0.01 (cross) and t/D = 0.02 (square). In all cases, it232

is roughly observed that error decreases as J increases, except for rocking and sway-rocking cross-coupling233

stiffnesses for L/D = 2. The vertical stiffness shows a gradual reduction of the error as L/D increases, whereas234

the lateral mode stiffnesses show little differences in the behaviour for L/D ≥ 4. Overall, the beam model235

achieves errors below 5% for the lateral mode stiffnesses and errors below 10% for the vertical stiffness when236

J ≥ 10 and L/D≥ 4.237
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3.2 Impedance functions238

The use of dynamic stiffnesses (also known as impedance functions) allows a much more general linear SSI239

analysis. They can be used for the calculation of OWT natural frequencies, as well as seismic analyses via240

the substructuring procedure. In this section, the comparison between beam and shell models is extended to241

impedance functions. The frequency-dependent differences between the two models are quantified through242

the relative error defined in Eq. (14). The proposed expression compares the absolute value of the complex243

difference between the result X obtained by the shell or beam approaches with respect to the maximum value244

obtained by the reference model (i.e., soil-shell approach) in the studied frequency range. This definition is245

preferred over a frequency-by-frequency relative comparison in order to avoid peak values of the error around246

the frequencies in which the reference result approaches to zero.247

∆(ao) =
|Xbeam(ao)−X shell(ao)|

max
a0∈[0,0.5]

[X shell(ao)]
(14)

Fig. 5 shows the impedance curves (real and imaginary parts) as well as the relative error for the illustrative248

case with L/D = 6, t/D = 0.01 and Gf/Gs = 4000, i.e. J = 40. All other cases are included as supplementary249

data. For all stiffness components, the error between the beam and the shell models is approximately constant250

initially, and then it starts to increase with the frequency. Such effect is physically justifiable in terms of251

the comparison between soil wavelength and foundation diameter. For frequencies leading to wavelengths252

comparable to the foundation diameter, the reduction to a load line performed by the beam model becomes253

inadequate. Thus, it is reasonable that this model starts to fail beyond a quarter-wavelength per diameter (ao ≥254

0.25). In order to give a more concise measure of this limiting frequency, two limiting frequencies alim
o,5% and255

alim
o,10% are defined when the error reaches respectively 5 and 10 per cent.256

Fig. 6 shows the values of alim
o,5% and alim

o,10% (calculated as in the previous illustrative case) for all cases257

under study. The line and point styles are also similar to the preceding section. The previously mentioned258

limit of ao ≥ 0.25 (associated with a quarter-wavelength per foundation diameter) is a valid indicative value for259

obtaining errors below 5%, although only when J ≥ 10. In the vertical and rocking components, some alim
o,5% are260

located below 0.2. This erratic behaviour is nonetheless due to the presence of a peak in the beginning of these261

error curves which lightly exceed the 5% (see supplementary data). This is further demonstrated by observing262

that alim
o,10% do not show this behaviour.263

14



-20

0

20

40

60

80

  a
o,10%
lim

a
o,5%
lim

R
ea

l

K
V
 / Gf D

-20

0

20

40

60

80

Im
ag

in
ar

y

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5

∆
 (

%
)

a
o

0

5

10

15

20

25

a
o,5%
lim

    a
o,10%
lim

K
H

 / Gf D

0

5

10

15

20

25

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5
a

o

0

10

20

30

40

a
o,5%
lim

    a
o,10%
lim

K
R
 / Gf D

3

0

10

20

30

40

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5
a

o

0

5

10

15

20

a
o,5%
lim

    a
o,10%
lim

K
HR

 / Gf D
2

0

5

10

15

20

0

5

10

15

20

0 0.1 0.2 0.3 0.4 0.5
a

o

Figure 5: Comparison between dynamic stiffnesses: L/D = 6, t/D = 0.01 and Gf/Gs = 4000 (J = 40)

0

0.1

0.2

0.3

0.4

0.5

 1  10  100

a o
,1

0
%

 l
im

J

0

0.1

0.2

0.3

0.4

0.5

 1  10  100

a o
,5

%

li
m

J

KV / Gf D

 1  10  100

J

 1  10  100

J

KH / Gf D

 1  10  100

J

 1  10  100

J

KR / Gf D
3

 1  10  100

J

 1  10  100

J

KHR / Gf D
2KHR / Gf D
2

L/D=2 L/D=4 L/D=6 L/D=8 L/D=10

KHR / Gf D
2

t / D = 1 ‰ t / D = 1 % t / D = 2 %

Figure 6: Limiting frequencies alim
o,5% (error <5%) and alim

o,10% (error <10%) of dynamic stiffnesses

15



3.3 Kinematic interaction factors264

In this section, the discrepancies between both models are studied for the kinematic interaction factors Iu and265

Iθ (foundation with unrestrained head). These represent the filtering produced by the foundation in terms of266

displacements and rotations at the head of the foundation (z = 0) when subjected to an incident wave field. In267

this case, the study is limited to vertically incident shear waves, which are typically the most relevant ones.268

Fig. 7 shows the kinematic interaction factors Iu and Iθ (real and imaginary parts) as well as the relative269

error (defined as in the previous section) for the illustrative case with L/D = 6, t/D = 0.01 and Gf/Gs = 4000,270

i.e. J = 40. All other cases are included as supplementary data. A good agreement between both models is271

observed, although higher discrepancies in the form of horizontal translation appear as the frequency increases.272

Thus, the error curves not only increase with the frequency, but also show several peaks and valleys. As in the273

case of impedance functions, it is possible to define two limiting frequencies alim
o,5% and alim

o,10% when the error274

reaches respectively 5 and 10 per cent.275

Fig. 8 shows the values of alim
o,5% and alim

o,10% for all cases under study. The limiting frequencies are276

roughly alim
o,5% ∼ alim

o,10% ∼ 0.1 for L/D = 2, whereas for L/D > 2 and J > 10 these are alim
o,5% ∼ 0.1÷ 0.2 and277

alim
o,10% ∼ 0.15÷ 0.5. There is no clearly defined trend for the limiting frequencies due to the presence of the278

previously mentioned peaks. Nonetheless, it is reasonable to use the conventional quarter-wavelength limiting279

frequency (alim
o = 0.25) for the integral model regarding kinematic interaction factors, which achieves errors up280

to approximately 10% for L/D > 2 and J > 10.281

3.4 Expressions for the limiting frequencies282

From the results presented in the previous sections, ready-to-use formulas are obtained in order to estimate the

limiting frequencies that ensure a certain error when using the beam model. A quadratic polynomial in terms

of the logarithm of the foundation-soil relative stiffness parameter J is assumed for approximating the limiting

frequencies:

alim
o,e ≈ c0 + c1 logJ+ c2(logJ)2 (15)

Tables 1 and 2 give the values of coefficients ci for the two maximum errors of 5% and 10% respectively.283

Expressions are presented for all impedance functions and kinematic interaction terms with the exception of the284

sway-rocking cross-coupling impedance. This component is not included as it is generally less restrictive than285

either the lateral or rocking impedances (making no sense to use the former without the latter). Note that linear286
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Figure 7: Comparison between kinematic interaction factors: L/D = 6, t/D = 0.01 and Gf/Gs = 4000 (J = 40)
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c0 c1 c2 Not applicable for
KV 0.2584 -0.0332 0.0054 J < 4, L/D < 4
KH 0.0322 0.0881 -0.0111 J < 4
KR 1.2758 -0.4636 0.0455 J < 16, L/D < 4, Gf/Gs < 4000
Iu 0.1135 -0.0282 0.0065 L/D < 6 (use alim

o ≈ 0.084)
Iθ 0.0343 0.0157 0 L/D < 6 (use alim

o ≈ 0.066)

Table 1: Coefficients for the expressions of the limiting frequencies. Error <5%.

c0 c1 c2 Not applicable for
KV 0.2664 0.0041 0 -
KH 0.2760 0 0 J < 4
KR 0.9667 -0.2693 0.0262 J < 10, Gf/Gs < 4000
Iu 0.5248 -0.0462 0.0026 L/D < 6 (use alim

o ≈ 0.13 [L/D = 2] or 0.32 [L/D = 4])
Iθ 0.0414 0.0335 0 L/D < 4 (use alim

o ≈ 0.10)

Table 2: Coefficients for the expressions of the limiting frequencies. Error <10%.

(c2 = 0) or constant (c1 = c2 = 0) expressions are preferred when they can be used without a significant loss in287

accuracy with respect to the quadratic formula.288

The expressions provided by Tables 1 and 2 are not recommended for values of J outside the studied interval289

[1,400]. Also, for some components, the proposed formulas are not adequate for certain limit scenarios (such290

as low foundation-soil stiffness contrast), which are indicated in the last column of each table. The proposed291

formulas (lines) together with the previous results (points) are shown in Fig. 9. In each graphical area, the292

limiting frequency is plotted against the dimensionless parameter J. Each column corresponds to a different293

foundation variable, while each row corresponds to a different maximum permitted error. Note that the points294

outside the applicability range of the obtained expressions are not included in the figure. For the kinematic295

interaction factors, the alternative values for the points outside the applicability range are also shown in red and296

purple colours.297

3.5 Application example298

In order to illustrate the accuracy of the soil-beam model to reproduce the response of the OWT-foundation299

system, a practical example is briefly presented in this section. The system is based on the reference NREL-300

5MW OWT model [Jonkman et al., 2009]. The tower is 70 m high and it has a hollow cross-section with301

variable diameter from 6 m at its base to 3.87 m at the hub height, whereas a constant thickness to diameter302

ratio of 0.45% is assumed. The supporting structure is a 20 m high, 6 m diameter and thickness ratio of 1%303

tubular member. No transition piece between supporting structure and tower is considered in the analyses. The304

foundation presents the same diameter (D = 6 m) and thickness ratio (t/D = 1%) as the supporting structure.305
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Figure 9: Comparison between the obtained limiting frequencies (points) and their proposed expressions (lines).

An intermediate embedment length ratio L/D = 6 is assumed in this example. The whole structure (tower,306

supporting monopile and foundation) is considered to be made of steel with: Youngs modulus Ef =210 GPa,307

density ρf =7850 kg/m3 and Poissons ratio νf =0.25. For the superstructure a hysteretic damping coefficient308

ξf =2.5% is considered.309

The soil properties are selected in order to reproduce a saturated media through elastic equivalent proper-310

ties: density ρs =2000 kg/m3, Poissons ratio νs =0.49 and hysteretic damping coefficient ξs =5%. Different311

foundation-soil stiffness ratios J = 10,40 and 160 are assumed in order to cover the range studied in the previ-312

ous sections. These values correspond to soils whose shear wave velocities are approximately cs =200, 100 and313

50 m/s, respectively.314

In coherence with the obtained kinematic interaction factors, the considered seismic excitation is a vertically315

incident shear wave. The free-field displacement is denoted as u f f , while its acceleration is ü f f .316

Figure 10 shows the Frequency Response Functions (FRF) of several representative variables of the OWT317

system. The second and third rows present the FRF of the displacement and rotation atop the turbine tower318

with respect to the free-field displacement. On the other hand, the fourth and fifth rows illustrate the shear319

force and bending moment at the base of the supporting structure (mud-line level) with respect to the free-320

field acceleration. The results obtained by assuming a fixed-base model (no SSI) are compared with the ones321

obtained through the substructuring procedure (see Section 2.1) using both the soil-shell or soil-beam models322

to characterize the foundation. In order to help in interpreting the results, the first row shows the limiting323

frequencies (corresponding to a maximum relative error between the shell and beam models less than 10%) for324

all of the foundation variables involved in the problem at hand. Each column of the figure corresponds to a325
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different soil-foundation relative stiffness ratio. Frequencies up to 20 Hz are considered as a wide frequency326

range for the energy content of the seismic excitation.327

The results presented in Fig. 10 show a clear influence of the SSI effects on all studied variables. In general328

terms, introducing the foundation behaviour results in a higher response of the system for small frequencies (<329

5 Hz), and a lower response for higher frequencies. The shifting of the system natural frequencies toward lower330

values produced by the SSI effects is also seen in the obtained results.331

The accuracy of using the beam model instead of the shell one can be also tested by comparing their results332

in Fig. 10. A good agreement between both models is found for all variables. Some discrepancies are pro-333

duced for frequencies above certain limiting frequencies. The horizontal impedance term seems to be the most334

important one, followed by the limit corresponding to the lateral kinematic interaction factor. However, these335

differences between the soil-shell and soil-beam models are not significant for the example case studied (note336

the logarithmic scale in the forces at the base variables). Thus, the results show that the real factor that limits337

the use of the soil-beam model is the maximum value of the dimensionless frequency ao = 0.5, i.e., foundation338

diameter equal to half of the wavelength. This restriction makes the soil-beam model to be used with caution339

for seismic analyses of large diameter foundations in extremely soft soils. The validity of the beam model in340

this scenario will strongly depend on the frequency content of the excitation, and the evolution with frequency341

of the studied FRF.342

4 Conclusions343

This paper presents a comparison between soil-shell and soil-beam models for the dynamic characterization of344

OWT foundation elements (piles or suction caissons) and the seismic analysis of the complete system. The345

reference results are computed with the first model, that uses Boundary Elements to model the soil behaviour346

coupled with shell Finite Elements to represent the foundation element. On the other hand, the soil-beam model347

is based on the integral expression of the Reciprocity Theorem together with advanced Green’s functions for348

the soil modelling, while the structural behaviour of the foundation is handled via beam Finite Elements. For349

the analyses, soil and foundation geometrical and material properties typical of this singular construction are350

assumed.351

First, the comparison is made in terms of the foundation characterization variables: static stiffness, impedance352

functions and kinematic interaction factors. A dimensionless analysis is made in order to present more general353

results. The main conclusions drawn from this study are:354
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• The dimensionless parameter J proposed by Doherty et al. [Doherty et al., 2005] to define the relative355

stiffness between the foundation and soil in static can be also applied for dynamic analyses.356

• In general terms, the soil-beam model accurately reproduces the global foundation response with respect357

to the rigorous soil-shell model. The agreement is quite good even for foundations with small aspect358

ratios.359

• The accuracy of the beam model is reduced for high frequencies and low foundation-soil stiffness contrast.360

• Closed-form expressions are proposed in order to estimate the applicability range, in terms of maximum361

dimensionless frequency, of the beam simplification. Those are functions of the foundation-soil relative362

stiffness parameter J and depend on the foundation variable to compute and maximum admissible error.363

An application example is also presented, in which the seismic response of a 5 MW OWT including SSI364

effects is computed via a substructuring procedure. The FRF of key structural variables obtained by both models365

(shell and beam) are compared, and the main conclusions drawn from this example are the following:366

• The soil-structure interaction effects significantly change the seismic response of the OWT system.367

• The foundation variable whose modelling has more impact on the obtained results is the lateral impedance368

term, followed by the lateral kinematic interaction factor.369

• Below the proposed limiting frequencies, virtually the same results are obtained regardless using the beam370

or shell model.371

• Even above these limits, the foundation beam model accurately reproduces the OWT response in an372

acceptable frequency range for seismic analyses. The upper bound corresponds to the frequency for373

which the foundation diameter coincides with half wavelength.374

• This restrains the use of the beam model for extremely soft soils if the high frequency content of the375

excitation is important. But for typical scenarios, the foundation beam simplification is a valid option for376

reproducing the OWT seismic response, making it a valuable tool especially for design or optimization377

steps.378
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A Validity of J as characteristic dimensionless parameter for dynamic461

analyses462

The dimensionless parameter J was proposed by Doherty et al. [Doherty and Deeks, 2003] to characterize the463

relative stiffness between the foundation and soil for static analyses. In this appendix, its use in dynamic regime464

is tested by computing the impedance functions and kinematic interaction factors for several configurations and465

comparing the results obtained for the same value of J.466

Five shell thickness ratios t/D = {0.001,0.01,0.02,0.05,0.1} are combined with a continuum range of467

values for the ratio between the foundation and soil shear modulus Gf/Gs in order to cover a comparable J468

interval. For brevity’s sake, only results for a configuration with aspect ratio L/D = 6 are presented. The rest of469

dimensionless properties are equal to the ones defined in Section 3.470

Figure 11 plots the impedance functions against the parameter J for the studied configurations. Real and471

imaginary components are presented in pairs for several dimensionless frequencies distributed in rows. Each472

column correspond to different impedance modes. The results show that the parameter J can be used to represent473

the relative foundation-soil stiffness for the static and low frequency scenarios. For higher frequencies the474

results are sensible to the thickness ratio if its value if larger than 2%, especially the vertical and lateral modes.475

However, the foundation elements for OWT structures typically present thickness ratios below this value, so the476

parameter J can be safely used to represents the foundation-soil stiffness contrast.477

Figure 12 shows now the results in terms of kinematic interaction factors. The real and imaginary com-478

ponents of the lateral and rotational terms are presented in pairs of rows. Each column correspond to different479

dimensionless frequencies (static values are omitted as their results are trivial). As commented before, for thick-480

ness ratios below 5%, the behaviour of the different configuration is determined by the J parameter. Thus, it481

can be also used to characterize the foundation-soil relative stiffness when studying the foundation kinematic482

response.483
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Figure 11: Validity of J for characterizing the relative foundation-soil stiffness in the computation of impedance
functions.
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Figure 12: Validity of J for characterizing the relative foundation-soil stiffness in the computation of kinematic
interaction factors.
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