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Abstract

An equivalent linear BEM-FEM model for the approximate analysis of the time harmonic
lateral response of piles considering soil degradation along the soil-pile interface is proposed.
The non-degraded soil around the foundation is modelled with boundary elements as a contin-
uum, semi-infinite, isotropic, homogeneous or zoned homogeneous, linear, viscoelastic medium.
Piles are modelled with finite elements as beams according to the Bernoulli hypothesis. Differ-
ently from what is considered in other BEM-FEM coupled numerical schemes, welded contact
conditions are not assumed herein between piles and soil. On the contrary, displacements along
FEM piles and within BEM soil are related through distributed springs and dashpots whose
properties vary along the pile and that represent the varying stiffness and energy dissipation
properties of a pile-soil interface with different levels of degradation at different depths. The
developed numerical model is verified by comparison against a more rigorous but much more
costly multi-domain boundary element model in which the same degraded soil regions around
the pile are modelled as three-dimensional regions.

Keywords: pile foundations; pile-soil interaction; soil degradation; BEM-FEM coupling; dy-
namic impedances.

1 Introduction

When piles are subjected to significant dynamic loads, such as those caused by machine vibration,
wind over the superstructure, or seismic actions, high levels of stress and strain are likely to develop
along the pile-soil interface (more probably in the upper parts of the pile) and induce effects such
as soil degradation in the soil region immediately adjacent to the pile. Separation (gapping) can
also occur close to the soil surface due to the low confinement pressure. These phenomena lead to
damaged or imperfect pile-soil interfaces that should be taken into account in the process of design
of pile foundations and piled structures subjected to dynamic loads.
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The dynamic and seismic response of piles under linear-elastic assumptions constitutes a topic
that has received significant attention. The time-harmonic dynamic response of pile foundations,
whose knowledge allows the use of sub-structuring approaches for the analysis of piled structures,
has been studied through a number of approaches: a) analytical approaches that are rigorous but
limited to a specific problem, lacking versatility and generality (see e.g. [1, 2, 3]); b) simplified semi-
analytical procedures, including Winkler-type models, that are focused on the computation of the
foundation impedance functions (see e.g. [4, 5, 6]), or on the analysis of the kinematic interaction
(see e.g. [7, 8, 9]; and c¢) numerical techniques such as the Finite Element Method (FEM) (see e.g.
[10, 11, 12]) that can be very versatile but having difficulties in modelling unbounded regions as the
soil; the Boundary Element Method (BEM) (see e.g. [13, 14, 15]) by assuming Green’s functions
for the soil behaviour which only require meshing the boundaries and interfaces of the problem; or
coupled BEM-FEM schemes taking the advantages of both methodologies: BEM formulations for
the soil and structural monodimensional FEM elements for the piles. This last approach has been
very appealing since the early 80’s (see e.g. [16, 17, 18, 19, 20]). Also nowadays, this strategy is
taken into account in models developed for a further understanding of the dynamic behaviour of pile
foundations, either by using the full-space fundamental solution in the frequency domain (see e.g.
[21]) or fundamental solutions for the layered half-space in the frequency domain (see e.g. [22]) or in
the time domain (see e.g. [23]).

The dynamic response of pile foundations taking different types of nonlinearities into account has
also received a significant amount of attention. Experimental studies that have provided relevant
data for advancing in the knowledge of these phenomena and have, therefore, contributed in the
development of new numerical models cover full-scale systems, e.g. [24, 25, 26], scaled 1g experimental
models, e.g. [27, 28, 29], and centrifuge tests, e.g. [30, 31, 32]. Developed numerical models in
this regard include Beam on Nonlinear Winkler Foundation (BNWF) approaches, finite element
formulations, and models that consider a weak zone in the soil around the pile. It has been a
hard task for researchers to propose reliable and complete models that account for different types of
dynamic nonlinearities involved in the problem.

BNWF models are popular due to the possibility of implementing all kinds of geometrical and
material behaviour laws with limited complexity, which makes them versatile and computationally
not very costly (see e.g. [33, 34, 35, 36]). However, modelling the soil medium through a series of one-
dimensional springs, usually uncoupled among them, constitutes an approach with limitations when
it comes to taking into account the three-dimensionality of the problem, and specially in stratified
or anisotropic soils. At the same time, the characterization of the laws of the nonlinear springs is
not a trivial task, and involves a significant amount of uncertainty. For instance, Rhamani et al. [37]
found recently that BNWF models fail to predict accurately the response of soil-pile systems under
dynamic or seismic loads even if they incorporate API p-y curves or more specific p-y curves derived
from continuum models. Consequently, they recommended the use continuum models.

Gerolymos et al. [38] found a good agreement between results of a BNWF model and those
of a nonlinear finite element model for the dynamic analysis of piles including soil and interface
nonlinearities. In fact, models based on finite element formulations are also very popular (see e.g. [39,
40, 41]). They can be advanced, and can incorporate a significant amount of detail and complexity,
but are therefore complicated to set up and verify properly, and can be computationally expensive. A
significant source of uncertainty lies in the calibration of the different parameters involved, specially
those related to the nonlinear constitutive laws. Mesh and boundary conditions imposed at the edges
where the soil mesh is truncated, are additional sources of uncertainty.

A different approach is based on approximately incorporate to the model the effects of degradation
and lack of bond by including a cylindrical soil zone around the pile whose shear modulus and material
damping differ from those of the outer medium [42, 43, 44, 45].

In fact, linear equivalent models can be very appealing if they are able to incorporate the most
significant features influencing the dynamic response of the soil-pile system. They are computa-



tionally very efficient and can be used in substructuring analysis, in optimization algorithms and
in parametric studies. However, traditional equivalent linear soil models could underestimate the
structural acceleration response under seismic action, as stated recently by Luo et al. [46].

Thus, this work aims at proposing a new equivalent linear numerical model for the approximate
analysis of pile-soil systems with degraded or damaged pile-soil interfaces. The model assumes that
the soil immediately adjacent to the pile shaft develops a certain level of degradation, which is
usually a function of depth. It is well-known that soils that have undergone high levels of strain,
experience a process of reduction of its shear modulus and an increase of its material damping ratio
(see e.g. [47, 48, 49]). This is depicted in Figure 1, where the representative shape of the curves
of evolution of shear modulus and damping ratio with shear strain are shown. Depending on the
stiffness and type of soil (sand, normal- or over-consolidated clay), and also on the depth of the
water table or soil properties such as the plasticity index, the variation in the soil shear modulus and
material damping ratio as a function of shear strain is different. Eurocode-8 [50], within its fifth
part, Section 4.2.3, states that, in such cases, the differences between small-strain values of the shear
wave velocity and those compatible with the strain levels induced by the design earthquake should be
taken into account, and provides indications on damping ratios and shear modulus reduction factors
as a function of ground acceleration ratio.
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Figure 1: Generic depiction of the variation of the soil shear modulus and the soil damping ratio as
a function of soil shear strain.

The proposal is based on a coupled BEM-FEM approach, uniting the advantages of both methods:
the piles are modelled as beam with finite elements; the degraded or imperfect pile-soil interface is
represented by distributed springs and dashpots whose properties vary with depth; and the soil
beyond the degraded interface is modelled by boundary elements.

The starting point of this model is another previous one developed by some of the authors (Padrén
et al. [21]). That model is based on the idea of a previous static approach (Mendonca and Paiva [51])
where it is assumed that the continuity of the soil is not altered by the presence of the piles and where
the tractions in the pile-soil interface are considered as a load-line applied within the half-space in
the boundary integral representation of the soil. It allows to simplify the formulation of the model
without significant loss of accuracy in the problems treated. The starting formulation can rigorously
take into account layered soils [52], pile groups [53] and inclined piles [54].

The perfectly bonded compatibility conditions between pile and soil assumed in the starting
formulation [21] is generalized in the present proposal to soil-pile equilibrium equations accounting
for contact effects through the inclusion of the mentioned distributed springs and dashpots between
pile and soil load-line. Parameters that define the distributed springs and dashpots along the pile-soil



interface can later be calibrated against numerical and empirical results, and can be used in efficient
parametric analysis by substructuring or direct methodologies in the frequency domain.

This paper focuses on the model description for the lateral dynamic analysis of pile foundations
considering pile-soil interface degradation and also its validation. To this end, the developed nu-
merical tool is defined in Section 2, and the reference and more rigorous tool used for comparison
purposes is defined in Section 3.1. Calibration results are presented in Sections 3.2 in terms of
horizontal impedance functions of single pile foundations. Then, the inclusion of the degradation
damping, which has been shown to be an essential phenomena involved in the system, is validated
in Section 3.3. Also, varying soil degradation through the pile depth is analysed and validated in
terms of horizontal impedance functions in Section 3.4.1, and in terms of displacements along the pile
length in Section 3.4.2. The new formulation is computationally more efficient and flexible, easing
the study of more complex problems. It and can be extended to study pile groups and generalized
to rake piles. On the other hand, the possibility for incorporating more genuine and complex models
of soil degradation is completely open.

2 Problem definition and description of the proposed model

The problem under consideration is depicted in Figure 2. A pile is embedded in a homogeneous
soil, and is subjected to time harmonic loads (horizontal, vertical or rocking) applied at the pile
head. The pile, of length L and diameter d, is assumed to respond as a linear elastic beam with
Young’s modulus £, area and mass moment of inertial A, and /,,, and material density p,, and will
be modelled with Euler-Bernoulli beam finite elements. The mass moments of inertia with respect
to both principal axes of inertia of the pile section have been assumed to be identical. Zero material
damping is considered for the pile. The non-degraded soil around the foundation is assumed to
respond as a horizontally layered isotropic homogeneous viscoelastic medium with Young’s modulus
E,, and density ps,, and will be modelled with boundary elements. The material damping of the
soil medium is considered by assuming frequency-independent hysteretic damping through complex
valued soil modulus of the type E,, = Re[Eg,](1 + 2i&,), where &, is the damping coefficient in layer
1.

Most models of this kind assume perfectly bonded contact conditions between pile and soil, which
would imply imposing compatibility conditions between pile and soil displacements. The model
proposed herein for the computation of the dynamic response of piles, on the contrary, seeks to take
into account, through an equivalent linear approach, the influence of a damaged pile-soil interface
representing soil degradation around the pile, together with possible contact effects such as lack of
bond. This imperfect pile-soil interface can be visualized as a degraded soil domain surrounding the
piles whose mechanical properties differ from those of the undisturbed soil beyond. Besides, damage
at the pile-soil interface will usually be a function of depth, as the largest displacements will usually
be experienced near the pile head, coinciding with the lowest soil confinement pressures. For this
reason, the diameter dg,(z3) and shear modulus Gg,(z3) of such degraded domain are assumed to be
also a function of depth. The size of this domain in relation to the pile diameter will be denoted by
the dimensionless parameter y(z3) = dq,(x3)/d.

As depicted in Figure 3, such damaged pile-soil interface is modelled by relating displacements
along FEM piles and within BEM soil through distributed springs and dashpots whose properties
vary along the pile and that represent the varying stiffness and energy dissipation properties of the
pile-soil interface with different levels of degradation at different depths.

The model proposed herein represents a significant evolution of that presented by Padrén et
al. [21] in the way in which the compatibility between pile and soil is defined. A brief summary
of the discretization scheme adopted for pile and soil load-line is presented in Section 2.1, while
a brief summary of the boundary element equations used to describe the dynamic response of the
non-degraded soil is presented in Section 2.2, being these aspects of the formulation inherited from
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Figure 2: Depiction of the problem.

the starting model as described in [21]. On the other hand, the updated equations of motion and the
finite element equations used to describe the dynamic response of the pile are presented in Section 2.3.
The major novelties of the proposed formulation are concentrated in Section 2.4, where the pile-soil
interface degradation modelling is presented together with the way in which it is included in a BEM-
FEM type of model. Finally, in Section 2.5, all involved equations are assembled into a global system
matrix of equations.

2.1 Pile and soil load-line discretization

Piles are discretized using three-nodded Euler-Bernoulli beam finite elements with axial deformation,
with thirteen degrees of freedom defined in each element: one vertical and two lateral displacements
at each node, and two rotations at each one of the extreme nodes, one around each lateral axis of the
pile (i.e., torsion excluded). Figure 4 depicts the element, axes and the symbols used to refer to each
one of the variables involved. ¢ is the elemental dimensionless coordinate varying from £ = —1 to
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Figure 3: Linear equivalent modelling of an imperfect pile-soil interface through distributed springs
and dashpots.

¢ = 1. The lateral displacements u] and u} along the pile element are approximated by a set of fourth
degree shape functions, while vertical displacements u} are approximated by the three Lagrangian
polynomials of second order, so that one can write

up (§) =pruy, + ol + sup + paub, 4 @sth, ;i =1,2 (la)
uz () :¢1U£3 + ¢2Uf3 + ¢gzub . (1b)
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This last set of functions is also used to interpolate within each element the pile-soil contact
interaction forces g” acting over the pile as
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Figure 4: Discretization of pile and soil load-lines.

4 (&) = day, + d2q) + G3d,, s 1=1,2,3 (4)
Similarly, the displacements along the load-lines within the soil are interpolated, also within the
element defined before, through an equivalent scheme

u‘;int — ¢1u2iint + QSZUZint + ¢3u81nt . 'L — 1’ 2’ 3 (5)

mg )
where u?;“ are the unknown displacements at internal soil BEM points coinciding with the beam
finite element nodes (see Figure 4).

2.2 Boundary element equations

As mentioned before, each stratum of the layered non-degraded soil domain is modelled by BEM.
The boundary integral equation for a time-harmonic elastodynamic state defined in a domain (2,
with boundary I' can be written in a condensed and general form as

cLu‘+/ p*udF:/ u*pdf‘+/ u' Xdr (6)
m m Qm

where ¢’ is the local free term matrix at collocation point x*, X are the body forces in the domain €2,,,,
u and p are the displacement and traction over the boundaries, and u* and p* are the elastodynamic
fundamental solution tensors corresponding to the complete space (Cruse and Rizzo [55]).

From the point of view of this formulation for the dynamic behaviour of the soil medium, it
is assumed that the soil continuity is not altered by the presence of the piles or by the degraded
zone around them. In turn, the effects of the pile-soil interaction are introduced through internal
distributed forces located along a so-called load-line within the soil medium. This distributed forces,
that will depend on the relationship mentioned above between displacements along the pile and
within the soil medium, are treated as body forces, and being the sole body forces involved in the
problem, Equation (6) can be written as

c‘u“r/ p*udF:/ u*de+/ u“q, dl (7)



where I'[" is the soil load-line within the domain €2, and q, are the pile-soil contact interaction forces
induced within the soil domain (see Figure 5a).
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Figure 5: Equilibrium conditions between pile and soil load-line.

These tractions along the soil load-line will also be interpolated in terms of the nodal pile-soil
contact interaction forces q° defined at internal points coinciding with the nodes of the beam pile
finite elements defined before as

4; (&) = drqy, + 2@, + P3qy,, 3 1 =1,2,3 (8)

As shown in Figure 6, the boundaries '™ are discretized into quadratic elements of triangular
and quadrilateral shapes with six and nine nodes, respectively. Once all boundaries have been
discretized, for each region €2,,, Equation (7) can be written in all nodes on I'™ in order to obtain a
matrix equation of the type

H%u® — Gslqs — Gssps (9)

where u® and p® are, respectively, the vectors of nodal displacements and tractions on the boundary
elements, H*® and G** are coefficient matrices obtained by integration over the boundary elements
of the fundamental solution times the corresponding shape functions, and G* is the coefficient
matrix obtained by numerical integration over the soil load-line of the fundamental solution times
the interpolation functions shown in Equation (3), when the unit load is applied on I'"™.

Furthermore, Equation (7) must be also applied on the internal nodes of the soil load-line leading
to

Hlsus . Gllqs + Cusint — Glsps (10)

where H” and G% are coefficient matrices obtained by numerical integration over the boundary
elements of the fundamental solution times the corresponding shape functions, G" is the coefficient
matrix obtained by numerical integration over the soil load-line of the fundamental solution times
the interpolation functions shown in Equation (3) when the unit load is applied on the soil load-line,
and u®n is the vector of nodal displacements along the soil load-line, which is multiplied by the
diagonal matrix C, whose non-zero terms are valued 1/2 in positions corresponding to pile nodes
placed on a smooth surface, as e.g. pile heads, and unity at the internal points.

2.3 Finite element equations

The time-harmonic dynamic response of the piles, discretized using the linear elastic beam finite
elements described in Section 2.1, can be described, in the finite element sense, by the matrix
equation
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Figure 6: Example of mesh typology used in the model (only a quarter of the geometry is shown).

(KP — w2Mp)up - (K° - wzl\/Is)uS‘“t =Fiop + Qd” (11)

where M? and K?” are the global mass and stiffness global matrices of the pile, u? is the vector of
nodal displacements along the pile, Fy,, are the forces at the top of the pile, Q is the global matrix
that transforms tractions along the pile to equivalent nodal forces and moments, and w is the circular
frequency of the excitation. The definitions of MP, K” and Q can be found in [21, 56].

In the case of models where welded contact conditions between pile and soil are assumed, the
equation of motion presented in Equation (11) does not include the second term in brackets multiplied
by the vector of nodal displacements along the soil load-line u®*», where M® and K?® are the global
mass and stiffness matrices of the soil column occupied by the pile shaft. Thus, this second part
of Equation (11) was not present in the simpler model described in [21] and that serves as starting
point.

The soil continuity, from the point of view of the BEM model for the soil, is not altered by the
presence of the pile. This fact entails that the model would initially overestimate the inertia and
stiffness of the pile by taking also into account those of the mentioned soil column. This effect is well
known and, given that the inertial effect is very significant, and much more important than the effect
of the additional stiffness, it has usually been corrected by subtracting the material soil density from
the pile density (see for instance [18, 16, 1, 21]).

On the other hand, displacements along pile and soil load-line are, in the present model, related
but not rigidly linked, which prevents from following the simpler strategy mentioned in the pre-
vious paragraph and forces to subtract those additional inertia and stiffness proportionally to the
displacements of the soil, and not to the displacements of the pile.

These two aspects justify the introduction of the —(K* — w?M?)u®int term, where the mass and
stiffness matrices of the soil column have been computed assuming the shear beam model.

Taking into account the discretization described above, and the corresponding shape functions,
the element stiffness sub-matrices corresponding to the lateral and axial behaviour (denoted by [ and
a, respectively) can be obtained as

kf]l:/ @i GAy - ¢idas;  i=1,2,3,4,5;
Le

j=1,2,3 (12)



and
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where primes denote derivative with respect to 3. These expressions yield the following sub-matrices
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Similarly, mass element sub-matrices can be obtained as
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30
-1 2 4|

where m® = pymd/4 is the distributed mass of the soil column.

2.4 Model of the soil-pile interface

Unlike the formulation of the former model [21], in this new model the relative displacements between
pile and soil load-line u? — u®»* are related to the pile-soil contact interaction distributed forces (see
Figure 5). Therefore, for an infinitesimal section at a certain depth z3, one can write:

fa (uf —ui™) =q7;  i=1,2 (20a)
(20Db)

ko (ug — u3™) =q

w3

where k; = ki(x, Ga,/Gs) and k, = k,(x, Gqa,/Gs) are the lateral and axial distributed impedances,
respectively, that represent the stiffness and damping properties of the degraded pile-soil interface.
In both cases, material damping is introduced assuming a frequency-independent hysteretic damping
model through complex valued coefficients of the form k), = Re[k.)](1 + 2ifq,), where &g, is the
soil-pile contact damping coefficient. These distributed impedances can be written as

ki(x, Gaz/Gs) = Fi(x, Ga,/Gs) - E (21a)
ka(X, Gdz/Gs> = Fa(Xa Gdz/Gs) : Gs (21b)

where Fj(x, Gq,/Gs) and F,(x, Gq,/Gs) are proportionality functions that determine the strength of
the bond between the pile and the soil. Taking into account that both the diameter and the shear
modulus of the degraded zone will, in general, be functions of depth (x = x(z3) and Gq, = Ga,(x3)),
the distributed impedances and the proportionality functions will, in turn, be also x3-dependent.
Possible distributions of these Fj(x3) and F,(x3) functions are shown in Figure 7. Usually, deficient
contact effects will be concentrated close to the ground surface, which is represented by lower values
of the proportionality functions in that region than in deeper zones. Later, different values of F; and
F, will be proposed depending on the level of degradation in the damaged pile-soil interface. It is
worth noting here that Equation (21) is similar to the one provided by Guin and Banerjee [19]. In
that case, however, the proportionality functions appear divided by the pile diameter d, leading to
pile diameter dependent functions.

Taking into account the discretization proposed in Section 2.1 for the displacements along pile and
soil load-line (Equations (1) and (5)) and the corresponding sets of shape functions (Equations (2)
and (3)), element stiffness sub-matrices can be computed by premultiplying Equation (20) by the
shape functions in Equation (3) and integrating along each element. Those element stiffness sub-
matrices are labelled as Kf, K¢, K7 and K2, where the indices [ and a stand for lateral and axial,
respectively, and p and s refer to pile and soil load-line. Then, the entries of the element stiffness
sub-matrices can be computed as

11
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For reference, if F; and F, are assumed to be constant over the element length, and hence

independent of z3, the degraded zone element stiffness sub-matrices for the lateral and axial behaviour
can be written as
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However, as Fj(x3) and F,(z3) will usually vary with depth, these matrices will, in general, be
evaluated numerically for each specific case.

Similarly, the entries of the element sub-matrices Q, and Qf, that transforms tractions along
the soil load-line to equivalent nodal forces, are computed as

q(lizij = quij = L (bl(bj d.Tg, Z7.7 = 17 27 3 (28)

leading to the following terms

I 4 2 -1
Qh=Qi =35 | 2 16 2 (29)
-1 2 4

Finally, after the assembly of the global matrices, Equation (20) can be expressed in matrix form
as

K v’ — Kj,u'™ = Q,,q° (30)

where K/ and K, are the resulting global stiffness complex matrices for the degraded zone.

2.5 Assembly of the global system matrix of equations

Grouping Equations (9), (10), (11) and (30), assuming compatibility conditions between strata inter-
faces and equilibrium along the pile-soil interface (q°* = —qg”), and considering that acting forces at
the top of the pile (Fy,p) are known together with the tractions at the free surface (usually p* = 0),
the dynamic behaviour of the soil-pile foundation system with a degraded soil zone surrounding the
pile is defined by the following system matrix of equations:

Hss _Gsl 0 0 u’ Gssps

Hls _Gll 0 C qs B Glsps 11
0 Q (K—uw™M) —(K'—wM) || w |~ | Fu, (31)
0 _de _ng Kiz uin 0

Equation (31) converges to that provided by Padrén et al. [21] when k;, k, — oo, situation in
which u’ = uP.

3 Results

The object of this section is twofold: (i) to verify that the proposed simplified coupled BEM-FEM
model can really be used to study the problem initially described of lateral vibration of a pile with
degraded pile-soil interface, and (ii) to calibrate the proportionality function F;(y, Gq,/Gs) for such
a problem.

To do so, results obtained with the BEM-FEM model proposed herein are going to be compared
against the ones obtained from a more rigorous three-dimensional multi-domain BEM approach for
three different configurations.

The first configuration is characterized by a degraded zone with constant diameter, extending
along the whole pile and with &4, = 0 (see Figure 8a), and will serve the purpose of obtaining an
expression for function Fj(x,Gqa,/Gs). The second configuration will incorporate material damping
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in the degraded zone as a function of damage (see Figure 8b), and will be useful to calibrate the
damping parameter of the pile-soil interface in the simplified model. Finally, the third configuration
will be less simplified, with an inverted truncated conical damaged zone only along the upper part
of the pile (see Figure 8c), and will show that the proposed model and proportionality function is

adequate to reproduce also more complex configurations such as this one.

|

\

Degraded zone

Gdz
fdz =0

\
\
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|
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\

édz =

N

Degraded zone

&3

Gdz
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D)

half-space
Non-degraded
half-space

Figure 8: (a) First configuration analysed, with a degraded zone of constant diameter along the whole
length of the pile (§4, = 0). (b) Second configuration analysed, with a degraded zone of constant
diameter along the whole length of the pile and taking the damping in the degraded domain into
account (&4, = f(damage)). (c) Third configuration analysed, with an inverted truncated conical
degraded zone.

3.1 Multi-domain BEM reference model

The multi-domain BEM model taken as reference for verification and calibration of the coupled BEM-
FEM model developed here, is the one developed and implemented by Maeso et al. [15]. Through
this model, a rigorous continuum mechanics solution of the problem is obtained. A linear system of
equations is derived from the singular boundary integral equation for elastodynamics [57]. This way,
the unknown boundary displacements and tractions are obtained.

Each of the domains that constitute the soil-foundation system, i.e. pile, half-space and degraded
zone, are governed by the integral equation

c‘ub+/ p*udF:/ u'pdl’
rm rm

corresponding to a continuum, finite or semi-infinite, isotropic, homogeneous, linear, viscoelastic
medium. All boundaries are discretized into quadratic elements of triangular and quadrilateral shapes
with six and nine nodes, respectively. Then, for each region €,,, Equation (32) can be written in all
nodes on I',, in order to obtain a matrix equation of the type

(32)

Hss s — Gssps (33)

The application of boundary conditions and compatibility between the different domains allows
to write the final matrix system of equation that represents the dynamic response of the problem.
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Hence, three domains are build and meshed for each configuration: one corresponding to the soil
half-space (Gs, v, ps and &), one corresponding to the pile (E,, v, and p,), and the degraded
zone domain (Gq,, Vaz, pa, and &q,). In this case, welded contact conditions are assumed along the
interfaces.

3.2 Calibration of proportionality function Fj(y, Gq,/Gs)

Figure 8a illustrates the first configuration of the study, characterized by a degraded zone of constant
diameter and extending along the whole length of the pile, which is embedded in a homogeneous
half-space. Three different values are adopted for the ratio between the diameters of degraded zone
and pile: x = dqg,/d = 1.2, 1.4 and 1.6. Another five values are considered for the ratio between
the shear modulus of degraded zone and half-space, representing different levels of degradation:
G4, /Gy = 1.00, 0.75, 0.50, 0.25 and 0.10.

Two soil types are assumed, stiff and soft, with Young’s modulus ratios of E,/E; = 100 and
E,/E,; = 1000, respectively, being E, the pile Young’s modulus. In both soil cases, & = 0.01,
vs = 0.4, being v, the soil Poisson’s ratio, and the ratio between densities is ps/p, = 0.7. The
pile aspect ratio is L/d = 15. In this calibration procedure no damping in the degraded zone
domain is assumed, but as it is considered to be a crucial aspect, mainly in highly degraded soils, its
incorporation to the BEM-FEM formulation is verified below.

Results are presented in terms of horizontal impedance functions normalized by pile diameter and
soil Young’s modulus. Those impedances are frequency dependent complex functions representing
the horizontal resistant force of the foundation when the pile tip is horizontally and harmonically
displaced a unit length. In the current formulation: Kj, = kpp, + iagcun, in which kyj, represents the
horizontal foundation stiffness and ¢, the horizontal foundation damping, being ay the dimensionless
frequency defined as ag = wd/cs, where ¢, is the soil shear wave velocity of the undisturbed half-space.

Figures 9a and 9b show an example of the kind of meshes generated for the reference multi-domain
BEM analyses, being (a) and (b) the complete and a pile top zoom view of the multi-domain BEM
mesh for the particular degraded zone diameter ratio of y = dg,/d = 1.4. Figure 9c shows a pile
top zoom view of the mesh used by the BEM-FEM simulations. It only includes the free surface
boundary elements and the pile finite beam elements. To avoid the truncation effects, and after
performing convergence analyses, the radius of the circular free-surface meshed in this analysis was
equivalent to four times the pile length.

It is important to notice the high reduction not only in the mesh complexity, but also in the
quantity of elements and nodes, leading to considerable computing time reductions. Having the
same free surface discretization, the multi-domain BEM mesh for the specific case mentioned above
is composed by 10730 nodes and 4183 elements, while the BEM-FEM mesh includes only 3866 nodes
and 960 elements, which represents a reduction of 61% in the number of nodes and of 77% in the
number of elements. Only 10 of the 960 elements and 21 of the 3866 nodes corresponds to the 1D
elements of the pile, so this reduction of elements and nodes is due to removing the interfaces between
the pile and the degraded zone, and between the degraded zone and the non-degraded half-space.

The impedance functions obtained from the reference multi-domain BEM model for the different
cases specified above are shown in continuous lines in Figures 10 and 11 for soft and stiff soils,
respectively. The pile foundation system behaves as expected, as y increases and Gq,/G decreases
the impedance function decreases. It is important to notice that the soil is not degraded when
Ga,/Gs = 1.00 (black lines) independently of the x value. To evaluate the variations on the impedance
function as soil degrades, the ratios between the impedances provided by the different degradation
grades considered, i.e. Gg,/Gs = 0.75, 0.50, 0.25 and 0.10, and the non-degraded case, i.e. Gq,/Gs =
1.00, can be computed for each y case, i.e. x = 1.2, 1.4 and 1.6. In the following, the reduction of
the impedance function is quantified in terms of the static stiffness. When the soft soil is considered
(E,/Es = 1000), the static stiffnesses decrease 1.4, 3.7, 9.2 and 20.1% when x = 1.2 and soil
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(a) (b) ()

Figure 9: Complete (a) and top zoom view (b) of a multi-domain BEM mesh for the particular
degraded zone diameter ratio of x = dg,/d = 1.4, and BEM-FEM mesh detail (¢) with 1D elements
for the piles. (Only a quarter of the geometry is meshed).
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Figure 10: Comparison between stiffness and damping function obtained from the proposed BEM-
FEM model and the reference multi-domain BEM model for the case depicted in Figure 8a. &g, = 0.
E,/Es; = 1000.
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degradation is set as Gq,/Gs = 0.75, 0.50, 0.25 and 0.10, respectively; 2.3, 6.2, 14.7 and 30.1% for
x = 1.4; and 3.2, 8.3, 19.0 and 37.1% for x = 1.6. Similarly, for the stiff soil cases (E,/Es; = 100),
the static stiffnesses decrease 1.8, 5.0, 11.9 and 24.8% when y = 1.2 and soil degradation is set as
Ga,/Gs = 0.75, 0.50, 0.25 and 0.10, respectively; 3.1, 8.2, 18.6 and 35.8% for y = 1.4; and 4.2, 10.8,
23.7 and 43.1% for x = 1.6.

The calibration of the values of the proportionality function F; for each of the configurations was
achieved by performing a sweep of simulations with the simplified BEM-FEM model and finding
the values of F; that minimize the difference between the impedance functions provided by both
models. The resulting values of Fj, offering the better matching to the multi-domain BEM simulation
results, are summarized in Table 1, and their associated horizontal impedance functions are shown in
Figures 10 and 11 for soft and stiff soils, respectively. A very good agreement is found between the
impedance functions provided by both models. The dynamic behaviour of the system is reproduced
adequately in all the frequency range with a constant value of F; through all the pile depth.

Gdz/Gs
1.00 0.75 0.50 0.25 0.10
1.2125.0 19.0 13.0 7.0 3.0
x 141250 160 9.0 40 18
1.6 250 140 70 3.0 1.2

Table 1: Proposed values of the proportionality function Fj.

The level of agreement does not decrease with soil degradation or frequency, and the proposed
model is able to reproduce both the static stiffness and the inertial effects.

As expected, the stiffness and damping of the soil-pile foundation system tend to decrease when
the Gq,/G ratio decreases and also when the size of the degraded zone increases. Another relevant
aspect is the low level of dependence of the F; parameter on the Young’s modulus of the pile E,,
the Young’s modulus of the soil Ey, and hence, the Young’s modulus ratio of the soil-pile foundation
system E,/E.

For this reason, a common F; function for both stiffness ratios is proposed herein as a compromise
practical solution in exchange for a small loss in accuracy. Note that this function yields a very slight
overestimation of the foundation impedance for E,/E; = 100 and, on the contrary, a very slight
underestimation of the foundation impedance for E,/Es; = 1000. For quantifying this disagreement
between the BEM-FEM and the rigorous multi-domain BEM model when considering soft or stiff
soil, the mean differences of the static impedance taking into account all x and Gg4,/G configurations
have been computed. The BEM-FEM underestimates the stiffness by only 1.5% when considering
E,/Es; = 1000 but overestimates it by 1.7% when considering E,/Es = 100.

A perfectly bonded behaviour of the pile-soil interface is obtained for F; = 25, used when the soil
around the pile is not degraded Gq,/Gs = 1. The function Fj is also presented in Figure 12 to show
qualitatively how it changes with y and Gg,/Gs.

The data presented in Table 1 has been fitted, by the least-squares technique, to the following
polynomial function that can be used for interpolation:

Gdz 2 Gdz Gdz 2 QGdz
F,=6.114 — 8. 258. .01 — 298. — 223. 29—
P =6 8,500 + 25874 + 3.013x" — 208 8 (- 33(G8) 90290
Gdz ? Gdz ’ 2 Gdz 2 Gdz ’ Gdz !
286. —11.2 —954 27.25 —9.345
" OX(&) 3((}3) 95400 (42} o725 (2 o
(34)

This expression, whose range of application is for x € [1.2,1.6] and G4,/G, € [0.10,1.00], is
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Figure 11: Comparison between stiffness and damping function obtained from the proposed BEM-
FEM model and the reference multi-domain BEM model for the case depicted in Figure 8a. &y, = 0,
E,/Es = 100.

plotted in Figure 13, where it is shown that it is a smooth surface that contains all the original data
present in Table 1 (shown in red points).

3.3 Modelling of material damping in the degraded domain

In the previous section, no material damping was initially considered for the degraded zone. However,
and as already mentioned in the introduction, the value of the damping ratio increases significantly
with the shear strain and the damage in the soil, and must therefore be adequately incorporated into
the model. For highly degraded soils, damping ratios can exceed 20%, which can induce significant
variations in the dynamic behaviour of the soil-foundations systems, taking into account that the
degraded zone surrounds the vibrating pile.

The expression proposed by Ishibashi and Zang [49] for the degraded soil damping ratios &4,
based on experimental tests, is adopted in this section, although other options could also be used.
Such expression depends on the plasticity index of the soil I, and the ratio between the equivalent
shear soil modulus and the maximum shear soil modulus Gg,/Gmax:

0.333 (1 -+ 001547 N2 o
a, = [0.586 (—d) —1.547 (G—d) +1

> G (35)

max
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Figure 12: Plot of the proposed proportionality function F; for the specific values of x and Gg,/G5
studied. Point values shown in Table 1.
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Figure 13: Plot of Equation (34) for the interpolation of the proportionality function F;. Point values
shown in Table 1.

Assuming a medium plasticity index (I, = 18.0) and considering that the maximum shear modulus
of the soil is the one of the undisturbed half-space domain (G.x = Gs), the damping ratios shown
in Table 2 are obtained for the different soil degradation levels adopted herein.

Adopting these damping ratios in the definition of the degraded zones for both in the multi-
domain BEM and in the proposed BEM-FEM model, the horizontal impedance functions shown
in Figure 14 for soft soil and in Figure 15 for stiff soil are obtained. The damping coefficients of
the impedance functions strongly change if compared with the ones with &3, = 0 (Figures 10 and
11 vs. Figures 14 and 15, respectively). Stiffness functions also vary slightly with the inclusion of
the degraded zone damping. The good agreement with the results provided by the reference model
is maintained. It is demonstrated that the material damping in the degraded domain is perfectly
captured by the simpler BEM-FEM model.

19



G4,/Gs | 1.00 075 050 025 0.10
£, | 0.010 0.043 0.096 0.166 0.218

Table 2: Damping ratios of the degraded zone based on the expression proposed by Ishibashi and
Zang [49] for different levels of degradation.
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Figure 14: Comparison between stiffness and damping function obtained from the proposed BEM-
FEM model and the reference multi-domain BEM model for the case depicted in Figure 8b. &4, # 0,
E,/Es = 1000.

3.4 Verification for a degraded domain with shape changing along pile
depth

The utility of the developed tool lies mainly in the possibility of considering a degraded zone whose
properties and geometry vary with depth. Usually, the maximum stresses and maximum strains
within the soil are located in the surroundings of the piles and close to the surface. Therefore, soil
degradation will generally be concentrated in the upper parts of the foundation, and will not be
regularly distributed along the pile, as in the first example studied above. Thus, the aim of this
subsection is checking whether the proportionality function proposed in the previous section can also
be applied to more general configurations.

To do this, the configuration represented in Figure 8c, with an inverted truncated conical degraded
zone with x(0) = 1.5 or 1.6, x(—hg,) = 1.2, and hg,/d = 3.0 and 6.0, is considered in this section,
being hg, the depth of the degraded zone. Results are presented in terms of impedance functions for
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Figure 15: Comparison between stiffness and damping function obtained from the proposed BEM-
FEM model and the reference multi-domain BEM model for the case depicted in Figure 8b. &4, # 0,
E,/Es = 100.

Ga,/Gs = 1.00, 0.75, 0.50, 0.25 and 0.10, as in the previous section. The configurations are studied
with both models. In the case of the proposed BEM-FEM formulation, the proportionality functions
found in the previous section are implemented, and the degraded zone damping ratio is obtained
from Equation (35). On the other hand, Figure 16 shows one of the meshes built for the analyses
carried out with the reference multi-domain BEM code.

3.4.1 Verification in terms of impedance functions

For the sake of brevity, only two configurations, are presented here, being the conclusions general
to all configurations studied. Impedance functions corresponding to x(0) = 1.6, E,/Es = 1000 and
hq,/d = 6.0 are presented in Figure 17, while impedance functions corresponding to x(0) = 1.5,
E,/E; = 100, hg,/d = 3.0 are presented in Figure 18. It is shown that the proposed model is
able to reproduce, with high accuracy, both the stiffness and damping functions provided by the
reference multi-domain BEM code, which also means that expression proposed in Equation (34) for
the proportionality function F; can be applied to configurations such as the one studied here.
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Figure 16: Detail of one of the meshes generated for the multi-domain BEM analyses

with the

inverted conical degraded zone (only a quarter of the geometry is shown).
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Figure 17: Comparison between stiffness and damping function obtained from the proposed BEM-
FEM model and the reference multi-domain BEM model for the case depicted in Figure 8¢ with an
inverted truncated conical degraded zone. &g, # 0, E,/Es = 1000, hg,/d = 6.0 and x(0) = 1.6.
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Figure 18: Comparison between stiffness and damping function obtained from the proposed BEM-
FEM model and the reference multi-domain BEM model for the case depicted in Figure 8c with an
inverted truncated conical degraded zone. &g, # 0, E,/Es; = 100, hq,/d = 3.0 and x(0) = 1.5.



3.4.2 Verification in terms of displacements

Apart from these impedance functions, related to the horizontal displacements at pile head, it is also
interesting to explore whether the simplified proposed model is also able to reproduce adequately
the response of the pile along its length. To this end, Figure 19 presents the distributions of lateral
displacements along the pile provided by the proposed BEM-FEM model and the reference multi-
domain BEM model for the configuration with E,/E; = 1000, x(0) = 1.6 and hq,/d = 6.0. The
results are presented for the five relative shear moduli considered for the degraded soil (Gq4,/Gs =
1.00, 0.75, 0.50, 0.25 and 0.10) and for three different dimensionless frequencies: ay = 0.0, 0.5
and 1.0. The figure also displays the displacements obtained for the soil load-line in the coupled
BEM-FEM model and the displacements obtained along the interface between degraded zone and
non-degraded half-space, in the case of the multi-domain BEM reference model. The deformed shapes
are normalized by the pile head displacement, and are plotted taking into account the corresponding
shape functions (Equations (2) or (3)).

It can be seen that the agreement between the pile deformed shape obtained from the BEM-
FEM model and the reference multi-domain BEM model is very high. It can also be seen that the
deformation of the soil load-line follows very accurately that of the degraded zone-half space interface,
which means that the term u” — u®t is representative of the deformation of the degraded zone.

As expected, the stiffer the degraded zone (from z3/d = 0 to z3/d = —hg,/d = —6, in this
case), the smaller is the separation between pile and soil load-line. Below z3/d = —hg,/d, were the
contact between pile and soil is no longer considered as damaged, the deformed shapes of pile and
soil load-line coincide.

4 Conclusions

An equivalent linear model for estimating the dynamic horizontal response of piles considering soil
degradation along the soil-pile interface has been presented, implemented and calibrated. Taking as
a starting point a previous boundary element-finite element coupled model proposed by some of the
authors (Padrén et al. [21]), the formulation proposed herein incorporates the possibility of modelling
an imperfect or damaged soil-pile interface along which bounded contact conditions no longer apply.
The proportionality functions used to define the distributed springs and dashpots that relate pile
and soil displacements have been calibrated for a specific set of configurations by comparison against
results of a multi-domain three-dimensional boundary element code. The formulation proposed
herein has been shown to be able to reproduce the impedance functions and displacements provided
by the more rigorous and computationally costly reference multi-domain BEM model. The proposed
coupled BEM-FEM formulation is not only computationally more efficient (it is 7.5 times faster than
the multi-domain BEM for the single pile case tackled here) but is also more versatile, and requires
much less work in mesh generation. The efficiency of the model will also allow to perform parametric
analyses or be incorporated in processes that require a large number of evaluations, such as in many
optimization techniques.

The novel aspects of this proposal could easily be integrated into alternative integral numerical
approaches, as the main ideas of the model are readily generalizable to other fundamental solutions
different from the one used in the paper. For the specific applications shown in the manuscript, the
half-space fundamental solution would be more efficient than the full-space used herein. On the other
hand, by using the half-space fundamental solution, a loss of generality is obtained because irregular
and/or non-horizontal surfaces could not be represented.

The formulation can now be extended to model pile groups, as the boundary element approach
used to model the soil allows to take rigorously into account pile-soil-pile interaction effects. It can
also be generalized to raked piles. Also, the model can be used to obtain results for sub-structuring
analyses, or can incorporate the superstructure or other elements for direct analyses of complete
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Figure 19: Pile and soil load-line displacements for the case of an inverted truncated conical zone
with E,/Es = 1000, x(0) = 1.6 and hq,/d = 6.0 and for different degraded zone degradation levels.
Comparison between BEM-FEM and reference multi-domain BEM models.
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soil-foundation-superstructure systems.

The properties of the pile-soil interface can now be calibrated for different configurations. Here,
the comparison against empirical results for specific cases of interest will play a crucial role. At the
same time, the definition of those properties of distributed stiffness and damping along the interface
could also incorporate more complex models of soil degradation depending for instance on shear
strain levels, such as those cited in the introduction of this paper. This updating of the degradation
model is intended to be part of future research efforts together with application analyses considering
groups of piles, pile inclination, and also stratified soils. In this sense, it would be interesting to
analyse how the degradation influences the resonant effects coming from the pile-to-pile interaction,
and compare results provided by the model proposed here to the ones existent in the literature, which
have been provided either by empirical tests or by using Winkler-based models.
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