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Abstract

Offshore Wind Turbine (OWT) support structures need to satisfy different Limit States (LS) such as Ultimate

LS (ULS), Serviceability LS, Fatigue LS and Accidental LS. Furthermore, depending on the turbine rated power

and the chosen design (all current designs are soft-stiff), target natural frequency requirements must also be met.

Most of these calculations require the knowledge of the stiffnesses of the foundation which, especially in the case

of large turbines in intermediate waters (30 to 60 meters), might need to be configured using multiple foundation

elements. For this reason, this paper studies, for a homogeneous elastic halfspace, the static stiffnesses of groups

of polygonally arranged non-slender suction bucket foundations in soft soils modeled as rigid solid embedded

foundations. A set of formulas for correcting the stiffnesses obtained from isolated foundation formulation are

proposed. It is shown through the study of several multi-megawatt OWTs that, as expected, group effects becomes

more relevant as spacing decreases. Also, group effects are sensitive mainly to shear modulus of soil, foundation

shape ratio and diameter, and the number of foundations. The results obtained from the soil-structure system

show that ignoring group effects may add significant errors to the estimation of OWT fundamental frequencies

and leads to either overestimating or underestimating it by 5%. This highlights the importance of adequately

modeling the interaction between elements of closely-separated multi-bucket foundations in soft soils, when cur-

rent guidelines specify the target fundamental frequency to be at least 10% away from operational 1P and blade

passing frequencies (2P/3P frequencies).

Keywords: offshore wind turbines, seabed foundations, soil-structure interaction, group effects, fundamental

frequency

1 Introduction

Offshore wind development is spreading around the world, including now Asia and the United States. So far,

the installations have been located near the coast, in shallow waters, i.e. water depths up to approximately 30

meters, using mainly monopile and gravity-based foundations. However, the expansion of this technology brings

the need of locating wind turbines in more difficult zones of larger depths. For instance, in China, some problems

have arisen due to the presence of soft soils in the available sites, and the need of foundations that withstand

severe extreme conditions (hurricanes). In order to increase the available surface for Offshore Wind Turbines

(OWT), foundation solutions for intermediate water depths between 30 and 60 meters are being studied. One of the

proposed solutions consists in using multiple foundations, buckets (suction buckets/caissons) or piles, connected

to a partially submerged substructure (conventional jacket, twisted jacket, multipod or other special designs) which

supports the wind turbine [1, 2], see Fig. 1. Examples of multiple foundation technologies are found in the Chinese

development, where foundations based on eight inclined piles are being built, see Fig. 2(a). Likewise, there are

recent installations based on jackets supported on three or four bucket foundations in Europe, see Fig. 2(b).

The size of fixed OWT has been growing continuously since the early 2000s. As the turbines increase in power,

the blades get longer, the Rotor-Nacelle-Assemblies (RNA) get heavier, and longer towers are required. Larger

turbines are also slower (operating 1P range is lower) and, as a result, target natural frequencies decrease. In many

cases, these natural frequencies will be very close to the dominant wave frequencies, thus making dynamic design

very important [1]. Given the vast number of design requirements, see e.g. [3], simplified design procedures have

been proposed [4, 5], which allow obtaining reasonable designs at the initial stages. In such procedures, among
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Figure 1: OWT foundation solutions for intermediate waters (30 to 60 meters)
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Figure 2: Multiple foundation examples: (a) Installation of a turbine on a eight inclined piles group, (b) Installation

of a jacket supported on three suction bucket foundations (Vattenfall Project)
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Figure 3: Isolated foundation
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Figure 4: Layout of polygonally arranged groups of foundations

other aspects, foundation stiffnesses are used to assess Serviceability Limit State (SLS), Fatigue Limit State (FLS)

and target natural frequency requirements. Because of the low value of the fundamental frequencies of OWTs

(0.2 to 0.5 Hz), the use of static stiffness matrices is usually accurate enough for taking into account soil-structure

interaction when estimating their fundamental frequency [6, 7].

In this context, the main object of the present paper is to provide insight into the way in which the interaction

between the different elements of an OWT multi-bucket foundation modify the global stiffness of this type of

foundations. More precisely, the aim is twofold: (i) to offer a practical way of incorporating group effects into

the computation of the stiffness of multi-bucket foundations by presenting a set of closed-form correction factors

to the common simplified stiffness matrix built from the already known stiffnesses of individual isolated buckets;

and (ii) to quantify the influence of considering these foundation group effects when using the resulting stiffnesses

for computing the fundamental frequencies of Offshore Wind Turbines. To do this, the stiffnesses of the groups of

foundations are computed using a three-dimensional boundary element model able to incorporate the geometry and

material properties defining the problem, and capable of modeling the interactions between individual foundations.

Polygonally arranged groups of buckets, embedded in a uniform elastic halfspace, are assumed. Four types of

polygonal bases (tripod, tetrapod, pentapod, hexapod) are analyzed, and each individual foundation is taken as

an rigid solid embedded cylindrical foundation, which is a reasonable simplifying assumption for modeling non-

slender bucket foundations in soft soils [8, 9, 10].

The rest of the paper is organized as follows. Section 2 describes the problem at hand. Sections 3 and 4

describe respectively the rigorous methodology based on a boundary element model and the simplified (without

group effect) methodology for the calculation of stiffnesses. Section 5 studies the group effects in detail, and a set

of correction factors for the simplified methodology is proposed. In Section 6, the proposed correction factors are

used to assess the relevance of group effects on the determination of the first natural frequency of OWT founded

on such types of foundations. Finally, the main conclusions of the paper are given in Section 7

2 Problem statement

The soil is considered as an isotropic homogeneous elastic halfspace (x3 ≥ 0) with shear modulus G and Poisson’s

ratio 0 ≤ ν < 0.5. Foundations are considered as rigid solid embedded cylindrical foundations with diameter D,

length (foundation depth) L, and within the range 0 ≤ L/D ≤ 1, bonded to the soil. Fig. 3 depicts the layout of a

given foundation.

Foundations are located at vertices of a regular N-sided polygon with N = 3,4,5,6, see Fig. 4. The polygon

has radius r, and side length s = 2r sin(π/N) (foundation spacing). All foundations are considered to be rigidly

connected, which constitutes a reasonable assumption for OWT jackets.

For these layouts, the present work studies the formulation of a closed-form static stiffness matrix for the
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Figure 5: Example mesh used by the BEM numerical model (N = 3, L/D = 1, s/D = 2)

system, where the six degrees of freedom stiffness matrix is reduced to the origin of coordinates (center of the

polygon). In order to do so, a simplified stiffness matrix based on a rigid link of isolated foundations is considered

first. Then, each element of this matrix is altered by correction factors due to group effects. Closed-form formulas

of most of these correction factors are obtained by curve fitting of results from a three-dimensional continuum

mechanics boundary element model.

3 Rigorous numerical model

A rigorous numerical model based on the Boundary Element Method (BEM) already developed by the authors

[11, 12] is used to perform isolated and multiple foundation stiffness analyses. For the purpose of the present

paper, the Mindlin’s fundamental solution [13] has been included in it. The use of this fundamental solution avoid

the discretization of the free-surface and only requires the discretization of the soil-foundation interface, providing

a simple and accurate methodology.

The Singular Boundary Integral Equation (SBIE) used to build the linear system of equations reduces to:

ci
lkui

k +

∫

Γsf

t∗lkuk dΓ =

∫

Γsf

u∗lktk dΓ (1)

where ci
lk is the free-term [14], uk and tk = σkjn j are respectively the displacement and traction vectors, u∗lk and

t∗lk are the fundamental solutions in terms of respectively displacements and tractions. The superscript �i denotes

variables related to the collocation (load) point, index l = 1,2,3 is the load direction, index k = 1,2,3 is the

observation direction, and Γsf represents all soil-foundation boundaries. Discretization uses 9 node quadrilateral

elements for foundation lateral and 6 node triangular elements for foundation bottom, as shown in Fig. 5 for a

given configuration (N = 3, L/D = 1, s/D = 2). Unit normal vectors shown are oriented outward of the domain.

Double nodes are used along the foundation bottom-lateral edge in order to allow discontinuous tractions there [12].

Boundary conditions for the stiffness calculation are given kinematically for all nodes as a rigid body motion:

• Vertical: u = (0,0,1).

• Horizontal: u = (1,0,0).

• Rocking: u = (0,−x3,x2).

• Torsional: u = (−x2,x1,0).

Therefore, welded contact conditions are assumed for all foundation-soil interfaces. Given the symmetry properties

of the foundation group with respect to the polygon center, results for horizontal and rocking modes are the same
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regardless of the use of any axis contained in the x1−x2 plane, except for small differences due to the discretization

orientation with respect to the axis. Stiffnesses are given by the total soil reaction in terms of resultant forces and

moments:

• Vertical: K
gr
V =

∫

Γsf
t3 dΓ.

• Horizontal: K
gr
H =

∫

Γsf
t1 dΓ, K

gr
SR =

∫

Γsf
(x3t1 − x1t3) dΓ.

• Rocking: K
gr
R =

∫

Γsf
(x2t3 − x3t2) dΓ, K

gr
SR =−

∫

Γsf
t2 dΓ.

• Torsional: K
gr
T =

∫

Γsf
(x1t2 − x2t1) dΓ.

which are obtained at the post-processing stage, once tractions tk from Eq. (1) are known after solving the resulting

linear system of equations. It must be noticed that coupled sway-rocking stiffnesses obtained from both horizontal

and rocking rigid body motions are the same, except for slight differences due to the discretization.

4 Simplified stiffness matrix

Without considering group effects, the stiffness matrix can be built in closed-form from previous results for isolated

foundations. Only very few of these results have been obtained from purely analytical methods. They correspond to

the very useful limiting case of a circular footing (L= 0) on uniform halfspace, where some simplifying foundation-

soil contact assumptions are considered for some components. Remarkable works in this area are those of Bycroft

[15] and Gerrard and Harrison [16] for horizontal loading, Spence [17] and Poulos and Davies [18] for vertical

loading, Borowicka [19] for moment loading, and Reissner and Sagoci [20] for torsional loading. For embedded

foundations, it is necessary to resort to semi-analytical or numerical methods, either the Finite Element Method

or the Boundary Element Methods, whose results are usually in the form of tables, charts or formulas obtained

from curve fitting. In this sense, it is important to highlight the line of work of Kausel [21, 22], Abascal [23],

Domı́nguez [24] and Wolf [25, 26], who proposed different formulas and charts for static and dynamic stiffnesses

of square and circular rigid embedded foundations. The reference work of Gazetas [27] collects and synthesizes

results of dynamic stiffnesses in the form of formulas and charts for isolated embedded foundations of arbitrary

basemat shapes (excluding annular shapes) for engineering practice. More recently, Doherty et al. [8, 9] obtained

stiffnesses of embedded circular footings including flexible buckets for non-homogeneous elastic soils. Some of

these results are suggested in several codes, such as the offshore standard DNV-OS-J101 [3] for design of OWT

structures.

Despite these formulas are considered for engineering practice, they achieve relative errors as high as 20% [28].

For the purposes of the present paper, it is necessary to obtain better approximations in order to correctly normalize

and extract group effects correction factors. In this regard, the previously described boundary element model (see

Section 3) for the isolated foundation is used for fitting formulas similar to those of Gazetas [27] but richer in

parameters. The resulting formulas are presented in Appendix A. Once the stiffnesses for isolated foundations are

established, the six degrees of freedom load-displacement relationship at x′1−x′2 −x′3 (see Fig. 3) can be written as

Kfuf = ff:
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(2)

where the superscript �f is used to emphasize that these terms correspond to an isolated foundation. Since the

foundation is axisymmetric, only five stiffnesses are present in the relationship between displacements/rotations

and forces/moments: vertical Kf
V, horizontal (or lateral) Kf

H, rocking Kf
R, sway-rocking Kf

SR (Kf
SR > 0) and torsional

Kf
T. Ignoring group effects, it is possible to obtain a simple closed-form stiffness matrix with respect to the center

x1 − x2 − x3 of a rigidly connected set of axisymmetric foundations located at the vertices of a regular polygon

whose circumcircle radius is r, see Fig. 4. It is straightforward to obtain by inspection that the vertical, horizontal
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and sway-rocking stiffnesses of the foundation group (Kgrsugrs = fgrs) as:

K
grs
V = NKf

V (3)

K
grs
H = NKf

H (4)

K
grs
SR = NKf

SR (5)

where N ≥ 3 is the number of vertices. Moreover, considering that that the rocking stiffness K
grs
R of the foundation

group depends on a rotation axis a contained in the x1−x2 plane and defined by a = (cosψ ,sinψ ,0), the following

equation is obtained:

K
grs
R (ψ) = NKf

R +

[

k=N

∑
k=1

sin2 (ψ + 2π(k− 1)/N)

]

r2Kf
V (6)

where summation turns out to be constant and equal to N/2, i.e. the resulting foundation is also axisymmetric.

Therefore, the rocking stiffness K
grs
R is:

K
grs
R = N

(

Kf
R +

1

2
r2Kf

V

)

(7)

The torsional stiffness K
gr
T of the foundation group is simply:

K
grs
T = N

(

Kf
T + r2Kf

H

)

(8)

Therefore, the stiffness matrix Kgrs of the foundation group can be written as:

Kgrs = N





















Kf
H 0 0 0 Kf

SR 0

0 Kf
H 0 −Kf

SR 0 0

0 0 Kf
V 0 0 0

0 −Kf
SR 0 Kf

R + r2Kf
V/2 0 0

Kf
SR 0 0 0 Kf

R + r2Kf
V/2 0

0 0 0 0 0 Kf
T + r2Kf

H





















(9)

This stiffness matrix can also be obtained in a systematic way by using rigid links through a master-slave relation-

ship [29] as:

Kgrs =
k=N

∑
k=1

[T(ψ ,k,N)]T ·Kfk ·T(ψ ,k,N) (10)

where Kfk = Kf since all foundations are equal. The master-slave transformation matrix (ufk = T(ψ ,k,N) ·ugrs)

is:

T(ψ ,k,N) =





















1 0 0 0 r3 (ψ ,k,N) −r2 (ψ ,k,N)

0 1 0 −r3 (ψ ,k,N) 0 r1 (ψ ,k,N)

0 0 1 r2 (ψ ,k,N) −r1 (ψ ,k,N) 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1





















(11)

where the master-slave distance vector components are:

r1 (ψ ,k,N) = r cos (ψ + 2π(k− 1)/N)

r2 (ψ ,k,N) = r sin (ψ + 2π(k− 1)/N)

r3 (ψ ,k,N) = 0
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5 Group effects study

5.1 Vertical stiffness

The group effects under static vertical loading of a group of foundations is qualitatively very well known from

a physical point of view, see e.g. [30, 31] for pile groups. In order to describe qualitatively the phenomena for

this and all other stiffnesses, we simply consider a two foundation system, where a rigid body motion is given

to one of the foundations while the other remain free (unloaded and unconstrained) in the soil mass. When a

vertical rigid body motion is given to one of the foundations, the other free-standing foundation coherently moves

vertically, horizontally and also tilts according to the soil displacement field (see Fig. 6). This means that there is

a vertical-vertical, vertical-horizontal and vertical-rocking mutual interaction between foundations. As the present

case is concerned, the vertical-horizontal and vertical-rocking mutual interactions cancel out from the group point

of view due to the symmetry of the foundation layout. The vertical-vertical interaction produces a helping effect,

thus group effects from the vertical stiffness point of view is an effective reduction of its value when compared to

the simple addition obtained from matrix analysis in section 4 through Eq. (3).

Fig. 7 shows the obtained correction factor γV = K
gr
V /K

grs
V for the vertical stiffness using solid lines, where K

gr
V

is obtained using the BEM model and K
grs
V is obtained from (Eq. (3)). As expected, the correction factor tends to

1 as s/D → ∞, and it does this monotonically from a minimum value between 0.36 (N = 6, L/D = 1) and 0.61

(N = 3, L/D = 0) obtained when s/D → 1. For a given spacing s/D, the correction factor is more severe as N

and/or L/D increase, which is a reasonable behavior. Roughly speaking, the correction factor is approximately 0.7

for s/D = 3. On the other hand, it is observed that it has a relatively small sensitivity to the Poisson’s ratio, except

for high L/D. The presented correction factors have been validated for the case L/D = 0 using the methodology

developed by Randolph and Wroth [32], showing practically identical results.

Given Boussinesq’s solution, see e.g. [13], and the obtained results, it is reasonable to consider a rational

function of the type 1/(1+ f (N,ν,L/D)/(s/D)) for approximating the correction factor. The following simple

formula has been obtained via curve fitting:

γV =
K

gr
V

K
grs
V

≈
1

1+ 0.11(1+ 1.68N)(1+0.71(L/D)0.76)/(s/D)
(12)

where the influence of the Poisson’s ratio has been neglected. For the curve fitting, BEM results from the full

combination of the following parameters is considered: N ={3, 4, 5, 6}, s/D ={1.01, 1.1, 1.25, 1.5, 2, 2.5, 3, 3.5,

4, 4.5, 5, 7.5, 10, 15, 20, 30, 50, 100}, L/D ={0, 0.125, 0.25, 0.5, 0.75, 1}, ν ={0, 0.1, 0.2, 0.3, 0.4, 0.49}; which

constitutes 2592 cases in total. The same cases are also considered for the curve fitting of the rest of correction

factors. The average relative error (∑ |(γ formula
V − γ reference

V )/γ reference
V |/Ncases) of this formula is 1.6%, while the

maximum relative error reached (max |(γ formula
V − γ reference

V )/γ reference
V ) is 10.7%. The goodness of this formula is

shown in Fig. 7 using dashed lines.

5.2 Horizontal stiffness

The group effects under static horizontal loading of a group of foundations is qualitatively very similar to that of

the vertical loading. By using again the two foundation example, it is possible to observe in Fig. 8 that the free-

standing foundation coherently moves horizontally with the soil mass, but it also moves vertically and tilts due to

the variation of the vertical displacement of the soil mass. Torsion is also present when the horizontal movement

is not aligned with both foundations. For the polygonal layout, horizontal-torsion mutual interactions cancel out

from the group point of view due to its symmetry. On the other hand, horizontal-rocking mutual interactions do not

cancel out and group effects related to the sway-rocking stiffness is also present. This effect is studied in section

5.4. As it happened for the vertical stiffness, group effects on the horizontal stiffness produce an effective reduction

of its value when compared to the simple matrix analysis shown in section 4 through Eq. (4).

Fig. 9 shows the obtained correction factor γH = K
gr
H /K

grs
H for the horizontal stiffness using solid lines, where

K
gr
H is obtained using the BEM model and K

grs
H is obtained from (Eq. (4)). As in the vertical loading case,

Poisson’s ratio has small influence on the correction factor for horizontal stiffness. In this case, however, Poisson’s

ratio becomes more relevant for small L/D. It has been verified the good agreement between BEM and Wong and

Luco [33] horizontal correction factor results for a two foundation system with L/D = 0.

Given Cerruti’s solution, see e.g. [13], and the obtained results, it is reasonable to consider again a rational

function of the type 1/(1+ f (N,ν,L/D)/(s/D)) for approximating this correction factor. The following simple

formula has been obtained via curve fitting of the results:

γH =
K

gr
H

K
grs
H

≈
1

1+ 0.06(1+ 3.08N)(1+1.2(L/D)0.53)/(s/D)
(13)
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Figure 8: Illustration of the effect of a foundation horizontal movement (right) over another free-standing founda-

tion (left)
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where the influence of the Poisson’s ratio has been neglected. The average relative error of this formula is 3.1%,

while the maximum relative error reached is 12%. The goodness of the proposed formula is shown in Fig. 9 using

dashed lines.

5.3 Rocking stiffness

The group effects under static rocking loading of a group of foundations are in some aspects different to vertical

and horizontal loadings, although they share some aspects to the former. Again, a two foundation example is

considered to offer a physical explanation to the results, see Figs. 10 and 11. While in the case of vertical and

horizontal rigid body motions the translation of one foundation translates the other free-standing foundation in the

same direction, i.e. there is a helping effect, in the case of rocking rigid body motion there are helping but also

counteraction effects. The rotation of a foundation about its own axis produces a rotation in the same direction on

the other foundation if it is located along the rotation axis, but it produces a rotation in the opposite direction if

the free-standing foundation is located perpendicular to the rotation axis (see Fig. 10). The vertical displacement

of a foundation due to its rotation about an axis passing through the center of the polygon produces counteracting

effects if the free-standing foundation is located on the opposite rotation side (see Fig. 11a), but it produces helping

effects if the other foundation is located on the same rotation side (see Fig. 11b).

Fig. 12 shows the obtained correction factor γR = K
gr
R /K

grs
R for the rocking stiffness using solid lines, where

K
gr
R is obtained using the BEM model and K

grs
R is obtained from (Eq. (7)). Due to the dominance of counteracting

effects for large spacings, the correction factor approaches unity as s/D → ∞ from correction factors greater than

one. This behavior is completely the opposite to what happens to the correction factors of vertical and horizontal

stiffnesses. Another opposite feature is the fact that the correction factor is not monotonous, which is due to the

presence of helping as well as counteracting effects on foundations with respect to the rocking mode. A peak in

the rocking stiffness of the group is observed for s/D between 1 and 4, being more noticeable for small N and

L/D. The group effects as s/D → 1 is however similar to the vertical and horizontal correction factors, showing a

stiffness decrease of the group but with a much faster stiffness change. There is sudden variations of the correction

factor from γR ≈ 0.7 at s/D = 1 to γR ≈ 1 at s/D = 3. Poisson’s ratio has greater influence on the correction factor

than in vertical or horizontal correction factors, but it still remains of secondary importance.

As in previous cases, it is reasonable to consider again a rational function for approximating the correc-

tion factor, but in this case the denominator is enriched with a (s/D)2 term, i.e. 1/(1+ f1(N,ν,L/D)/(s/D) +
f2(N,ν,L/D)/(s/D)2). The following simple formula has been obtained via curve fitting of the results:

γR =
K

gr
R

K
grs
R

≈
1

1+ f1R/(s/D)+ f2R/(s/D)2

f1R =−0.67(1− 0.13N)(1− 0.53ν)(1+0.35(L/D)0.49)

f2R = 0.29(1− 0.04N)(1− 0.12ν)(1+2.87(L/D))

(14)

The average relative error of this formula is 1.2%, while the maximum relative error reached is 6.7%. The goodness

of the proposed formula is shown in Fig. 9 using dashed lines.

5.4 Coupled sway-rocking stiffness

The group effect related to the coupled sway-rocking stiffness has an unexpected and very interesting behavior.

While the other stiffnesses tend to the values obtained from isolated foundations as the spacing increases, the sway-

rocking stiffness tend to a different limiting value, as shown in Fig. 13. To the best knowledge of the authors, this

type of behavior is not present in the literature. We have investigated this issue by analyzing the numerical results,

and we have found a theoretical answer based on the use of point load solutions.

Fig. 13 shows the obtained correction factor γSR = K
gr
SR/K

grs
SR for the sway-rocking stiffness, where K

gr
SR is

obtained using the BEM model and K
grs
SR is obtained from (Eq. (5)). The resulting stiffnesses are greater than those

obtained from isolated foundations when s/D → ∞. By examining the numerical results regarding the horizontal

mode, it is observed that despite the vertical resultant forces on each foundation vanish as s/D → ∞, the product

of these forces by their distance to the rotation axis of the foundation system tends to a finite value. This produces

an additional moment, which added to their own moments (similar to those of an isolated foundation), gives the

resulting increased stiffness. An analogous behavior is also observed for the rocking mode and the horizontal

resultant, as expected from the stiffness matrix symmetry.

In order to evaluate this additional stiffness, we consider a convenient system of point loads at the interior of

the halfspace using Mindlin’s solution [13], which collapses into Cerruti’s solution [34] when the load is applied

at the free-surface. The use of point loads is justified since it is the behavior as r → ∞ which is being studied.
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Figure 10: Illustration of the effect of a foundation rocking movement (right) over another free-standing foundation
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Figure 11: Illustration of the effect of a foundation vertical movement due to a rotation about an external axis

(right) over another free-standing foundation (left)
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Figure 12: Correction factor γR = K
gr
R /K

grs
R for the rocking stiffness

We thus start by recalling that the vertical displacement due to an horizontal load P acting in the x direction and

applied at (xl ,yl ,zl) = (0,0,c) is:

w =
Px

16πG(1−ν)

[

z− c

R3
1

+
(3− 4ν)(z− c)

R3
2

−
6cz(z+ c)

R5
2

+
4(1−ν)(1− 2ν)

R2(R2 + z+ c)

]

(15)

where R1 =
√

x2 + y2 +(z− c)2 and R2 =
√

x2 + y2 +(z+ c)2, and the conventional notation (x ≡ x1, y ≡ x2,

z ≡ x3) is here used instead of the indicial notation for the sake of clarity. Assuming that load and observation

points are at the same vertical coordinate Ll = z = c, and considering a cylindrical coordinate system centered at

the center of the regular polygon (see Fig. 4), the vertical displacement wij of a point j (foundation j) due to an

horizontal load P applied at a point i (foundation i) is given by:

wij =
Pxij

16πG(1−ν)

[

−
12L3

l

(x2
ij + y2

ij + 4Ll)5/2
+

4(1−ν)(1− 2ν)

(x2
ij + y2

ij + 4Ll)+ 2Ll(x
2
ij + y2

ij + 4Ll)1/2

]

(16)

where xij = r[cos(2π( j− 1)/N)− cos(2π(i− 1)/N)] and yij = r[sin(2π( j− 1)/N)− sin(2π(i− 1)/N)]. For r →
∞, we can assume that vertical and horizontal load-displacement relationships are those of isolated foundations

(Appendix A). Therefore, if we consider P = Kf
H, then wij is the vertical displacement at j due to a unit horizontal

displacement at i. Furthermore, if we multiply this wij by Kf
V, then we obtain the resulting vertical force fij = Kf

Vwij

at j (for a fixed foundation at j) due to a unit displacement at i. The resulting moment with respect to the rotation

axis is simply mij = fijr cos(2π( j− 1)/N). Taking the limit of mij as r → ∞ gives:

m∞
ij = lim

r→∞
mij =

(1− 2ν)Kf
VKf

H

4πG

rxij

x2
ij + y2

ij

cos(2π( j− 1)/N) (17)

where it must be noticed that all r from the fraction rxij/(x
2
ij + y2

ij) cancel out, and only trigonometric functions

remains. Moreover, Ll also vanish, showing that Cerruti’s solution lead to the same result. The total additional

sway-rocking stiffness can be obtained by superposition. The summation of moments mij for all loads i = 1,N and

all observation points j = 1,N except when i = j:

K
gra
SR =

N

∑
i=1

N

∑
j=1, j 6=i

m∞
i j (18)
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Figure 13: Correction factor γSR′ = K
gr
SR/K

grs
SR for the sway-rocking stiffness

This expression has been solved for a number of values of N ≥ 3 using a computer algebra system, which, by

induction, allow us to propose the following solution for arbitrary N:

K
gra
SR = N(N − 1)

(1− 2ν)Kf
VKf

H

16πG
(19)

The validity of this expression is shown in Fig. 14, where it can be seen that the correction factor using K
grs
SR +K

gra
SR

as the reference stiffness now tends to unity as s/D → ∞. The group effect related to the proximity between

foundations now follow a similar pattern to horizontal and vertical correction factors.

Given that the resulting correction factor is similar to the horizontal and vertical cases, it is assumed a similar

type of function, but where the Poisson’s ratio is now included given its influence. The following simple formula

has been obtained via curve fitting of the results:

γSR =
K

gr
SR

K
grs
SR +K

gra
SR

≈
1

1+ 2.27(1− 2.06/N)(1+1.39(1−0.96ν)(L/D)0.48)/(s/D)
(20)

The average relative error of this formula is 3%, while the maximum relative error reached is 15%. The goodness

of the proposed formula is shown in Fig. 14 using dashed lines.

5.5 Torsional stiffness

The group effect under static torsional loading of a group of foundations is in some ways similar to rocking

loading but also to horizontal loading. By using the two foundation example, see Fig. 15, the torsional rotation of

a foundation about its own axis produces a rotation in the opposite direction of the other free-standing foundation.

On the other hand, the horizontal displacement of one of the foundations due to a torsional rotation with respect

to the center of the polygon produces counteracting effects on the other foundation if located on the opposite side,

but helping effects on other foundation if located on the same side.

Fig. 16 shows the obtained correction factor γT = K
gr
T /K

grs
T for the torsional stiffness using solid lines, where

K
gr
T is obtained using the BEM model and K

grs
T is obtained from (Eq. (8)). The first aspect to observe is the fact that,

although in all cases the correction factor naturally tends to unity as s/D → ∞, it does from values above or below

unity depending on N and ν . Moreover, the tripod and tetrapod cases show a behavior very similar to rocking

loading, while the pentapod and hexapod cases show a behavior similar to horizontal loading. This is explained by

the fact that as N increases, the interior angle of the polygon tends to 180°, i.e. torsion tends to produce coherent
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SR/

(
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)

for the sway-rocking stiffness

displacements on neighboring foundations, and the helping effect similar to the horizontal loading case dominates.

On the contrary, for small N the counteracting effect of the torsional rotation dominates, showing a correction

factor very similar to the rocking loading.

Unlike in the previous cases, no closed-form formula with the same level of simplicity and accuracy has been

found for this correction factor.

6 Relevance of group effects on fundamental frequency of OWTs

In this section, the relevance of using group effects on the calculation of the first natural frequency of offshore

wind turbines is studied. To this end, three multi-megawatt turbines are considered: Siemens SWT-3.6-107 [35],

NREL 5-MW Reference Wind Turbine [36] and DTU 10-MW Reference Wind Turbine [37]. Table 1 collects the

properties of these turbines relevant to this work.

Model P (MW) MRNA (t) Lt (m) Dt (m) tt (mm)

Siemens SWT-3.6-107 3.6 220 80 3.25 32.5
NREL 5-MW Ref. WT 5 350 90 4.9 23.5
DTU 10-MW Ref. WT 10 675 119 6.9 29

Table 1: Definition of OWTs used in the present study

Fig. 17 shows the 6-DOF model used to study the present problem, which consists of three nodes with hor-

izontal displacement and rotation. At the hub level, a lumped mass is modeling the RNA (MRNA). Both tower

and substructure are Euler-Bernoulli beams made of steel (Est = 210 MPa, ρst = 8000 kg/m3, νst = 0.3), where a

hollow cross section, with constant diameter Dt and thickness tt, is assumed for the tower, and the structural prop-

erties of the substructure are characterized as relative to those of the tower as EIs = rIEIt and As = rAAt, where A

and EI are the cross-sectional area and inertia. The length of the tower is Lt, and a variable substructure length Ls

is considered. Added mass due to the fluid-substructure interaction can be safely neglected, as demonstrated by

Moll et al. [38] for jackets. Different shear moduli G and Poisson’s ratios ν representing soft soils will be con-

sidered. Multi-bucket foundations with N = 3 (tripod), N = 4 (tetrapod), N = 5 (pentapod) and N = 6 (hexapod),

with different center-to-center spacings s, foundation diameters D and lengths L are studied. The soil-foundation

interaction is modeled with the proposed (corrected or uncorrected) static stiffness matrix. A modal analysis of

this simple OWT model is used to obtain the first natural frequency.
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Figure 15: Illustration of the effect of a foundation torsional movement (right) over another free-standing founda-

tion (left)
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Figure 17: OWT model including soil-structure interaction
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The relevance of including or neglecting the group effects in the multi-bucket foundation will be assessed by

presenting the ratio f ′n/ fn for different configurations, being fn the OWT fundamental frequency computed con-

sidering the simplified foundation stiffness matrix presented in Section 4, and f ′n the OWT fundamental frequency

computed considering the corrected stiffnesses (computed through the closed-form correction factors provided in

Section 5) where the interaction between elements is taken into account. It is worth mentioning here that the ap-

plicability of the closed-form correction factors to this analysis has been validated by comparison against the same

functions computed using the stiffness functions obtained from the more rigorous BEM methodology presented in

Section 3 (not shown for the sake of brevity), having found that the results are very close to each other within the

margins provided in Section 5, and that both methodologies allow to draw the same conclusions.

Thus, Fig. 18 presents the ratio f ′n/ fn as a function of the bucket separation ratio s/D for the Siemens SWT-3.6-

107 OWT mentioned above and for different configurations of the OWT system. Each subplot illustrates how the

change in one of the system parameters (foundation shape ratio (a); bucket diameter (b); number of elements (c);

substructure length (d), cross-section inertia (e) and area (f); soil Poisson’s ratio (g); and soil stiffness (h)) affects

the evolution of that ratio. In all those subplots, the variation of these parameters is studied around a starting base

case, defined by the following values: L/D = 0.5, D = 2 m, N = 3, Ls = 30 m, rI = 1, rA = 1, ν = 0.49 and

G = 5 MPa.

In general, f ′n/ fn functions are non-monotonous with s/D, with a maximum located at 1.3 < s/D < 2.2, a

minimum value for s/D = 1 (except in the case of surface footings, as seen in L/D = 0 case) and, as could

not be otherwise, a tendency to unity for largely spaced foundations. This means that, as expected, the more

significant influence of the interaction between foundation elements arise when they are arranged very close to each

other. However, the large variation of the f ′n/ fn functions for small separation ratios is very interesting because

neglecting group effects leads to significant overestimations of the fundamental frequency ( f ′n/ fn < 1) in the case

of extremely (unrealistic in some cases) close elements while, on the contrary, for slightly more spaced elements

(1.3< s/D< 2.2 depending on the specific configuration) the simplified model yields a significant underestimation

of the system first natural frequency. In both cases, the error in the estimation of the OWT fundamental frequency

due to neglecting the interaction between foundation elements can reach up to 5% in any of the two directions.

Bucket shape ratio, bucket diameter and number of buckets are the system parameters that exert the largest

influence on the computed fundamental frequencies. For L/D = 1, the fundamental frequency is overestimated

by the most simplified model if s/D < 1.5, but tends to be underestimated for all other cases, especially for very

shallow foundations, with the limit case of the surface footings yielding the maximum f ′n/ fn values. At the same

time, the largest the bucket diameter, the less important the influence of the group effects, in such a way that for

diameters D ≥ 4, their influence can be considered negligible. On the other hand, the number of elements defines

very clear tendencies. For multi-bucket fondations with more than four elements, the fundamental frequency is

always overestimated when neglecting group effects, though the influence is negligible for s/D ≥ 2, while in the

case of tripods and tetrapods, the fundamental frequency tends to be underestimated except for really close cases.

Here, it is worth highlighting that the largest influences appear for small groups (N = 3) or very large groups (N = 6

or larger).

As for the rest of parameters, substructure length and mass (subplots (d) and (f)) present no significant influence

on the ratio under study. Similarly, laterally stiffer substructures do not alter the conclusions drawn before in terms

of fundamental frequency ratios (even tough this parameters affect the value of the fundamental frequencies them-

selves). Soil parameters, on the other hand, present a more significant influence. Soils with low Poisson’s ratios

(that could be used to represent unsaturated sands) yield a largest influence of the group effects when compared

to soils with large Poisson’s ratio (that could be used to represent saturated soils). At the same time, the influence

of the group effects is more relevant in softer soils, for which the fundamental frequencies tend to be significantly

underestimated in very soft soils.

In order to find out whether the size and inertia of the wind turbine may alter the conclusions drawn in the

previous paragraphs, Fig. 19 presents the evolution of f ′n/ fn as a function of bucket separation ratio s/D for

the limit configurations presented in the previous figure but comparing the influence of the interaction between

foundation elements over the NREL 5-MW (green lines) and the DTU 10-MW reference turbines (red lines)

besides the previously studied Siemens SWT-3.6-107 turbine (black lines). The turbine itself does not alter the

tendencies and main conclusions described above. The magnitude of the influence of considering the group effects

increases with the size of the turbine, with maxima growing from approximately 3 to 5% from the smallest to the

largest turbine under consideration.

7 Conclusions

In the present paper, the influence of the group effects on the stiffnesses of polygonally-arranged multi-bucket

foundations for offshore wind turbines has been explored. To this end, a rigorous elastic boundary element model
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has been used to compute a set of correction factors representing the magnitude of the group effect. Such factors

were later fitted into closed-form formulas that can be easily used to incorporate group effects to the common stiff-

ness matrices obtained from the stiffnesses of the individual elements. In turn, these corrected stiffness functions

can be used to assess SLS, FLS and target natural frequency requirements for OWT.

For translational stiffnesses (vertical and horizontal), correction factors are monotonous curves starting from

around 0.5 when foundations are together, and smoothly approaching unity as foundation spacing gets large. They

mainly depend on the spacing s/D, the foundation shape ratio L/D, and the number of foundations in the polygon

N. At moderate spacings, say s/D = 3, group stiffnesses are reduced to about 70%.

For rotational stiffnesses (rocking and torsion), correction factors start from around 0.65 when foundations are

together, then, depending on the foundation shape ratio L/D, number of foundations N and Poisson’s ratio ν , they

show a peak with magnitude greater than one, and finally they smoothly approach unity from above or below unity

depending on the case as foundation spacing increases. These peaks are located between s/D = 1 and s/D = 4,

and they can reach values up to 1.2, although they reduce their values with the embedment and the number of

foundations.

For the coupled sway-rocking stiffness, there exists an additional stiffness term to be added to those obtained

from isolated foundations. Once this additional stiffness is added, the correction factor has a behavior similar to

that of translational stiffnesses.

The influence, on the resulting fundamental frequencies of OWTs, of using foundation stiffnesses that include

or neglect group effects is also tackled at the end of the paper. To do this, the alterations in the fundamental

frequencies of a large set of systems, including different large turbines, foundation configurations, substructure

configurations and soil properties, were presented. The fundamental frequency obtained without taking into ac-

count group effect may be misestimated up to 5% for closely-spaced foundations in soft soils. Besides, there exists

large variations of the ratio between fundamental frequencies computed considering or not group effects, as that

ratio can change very rapidly from 5% of overestimation to 5% in underestimation for different separation ratios.

This highlights the importance of adequately modeling the interaction between foundation elements in these cases

and, given that fundamental frequencies must be at least 10% away from operational 1P and 2P/3P frequencies, it

can be concluded that the group effect should not be neglected when computing the fundamental frequencies of

OWTs founded on closely-spaced multi-bucket foundations in soft-soils.

The present findings establish the core for future work where the influence of the bucket specific geometry

and flexibility [12] can be incorporated. The consideration of non-linear phenomena lies beyond the scope of the

present work.
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A Stiffnesses of rigid cylindrical foundations

Stiffnesses for a rigid cylindrical foundation completely bonded with the surrounding homogeneous soil (0 ≤
L/D ≤ 1, 0 ≤ ν < 0.5) can be approximated as:

Kf
V =

2GD ln(3− 4ν)

1− 2ν

[

1+ 1.12(1− 0.84ν)

(

L

D

)0.84
]

(21)

Kf
H =

4GD

2−ν

[

1+ 1.83

(

L

D

)0.74
]

(22)

Kf
SR =

11GD2

4(15− 17ν)

[

1− 2ν + 20.7(1−ν)

(

L

D

)1.28
]

(23)

Kf
R =

GD3

3(1−ν)

[

1+(7.5− 9ν)

(

L

D

)

+(10.5− 7.7ν)

(

L

D

)2.5
]

(24)

Kf
T =

2GD3

3

[

1+ 5.18

(

L

D

)0.93
]

(25)

where average relative errors after fitting the parameters with respect to BEM results are respectively: 0.8% (max.

1.9%), 1.1% (max. 2.4%), 2.3% (max. 6.0%), 0.6% (max. 4.9%), and 1.1% (max. 4.2%). These formulas are

based on Gazetas’ methodology [27], where each stiffness component K(G,ν,D,L) is built from the product of

the surface footing stiffness Ksurface(G,ν,D) and an embedment dimensionless factor κ(ν,L/D).
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