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Abstract
Boundary element method formulations usually rely eventually on the
calculation of weakly singular integrals, and hence robust and efficient
algorithms for their evaluation are desirable. This paper proposes a nu-
merical scheme based on a conformal polar transformation, four novel
non-linear angular transformations, and a subdivision pattern which al-
lows treating both triangular and quadrilateral elements in a common
framework. It is shown that this scheme has small sensitivity to the loca-
tion of the collocation point and the element aspect ratio and skewness
because all sources of angular quasi–singularities have been removed by
the non-linear transformations. The proposed methodology is compared
against others where its robustness and efficacy is demonstrated.

Keywords: numerical integration, polar coordinates, singular inte-
grals, boundary element method

1 Introduction
The Boundary Element Method (BEM) is nowadays used in many areas
of the industry where its advantages are exploited. The effort of numer-
ous researchers and developers has allowed the BEM to be a well estab-
lished methodology [5, 3, 2]. One of the key issues is the correct and
efficient evaluation of the integrals arising in the method, which require
the use of specific strategies.

Integrals should preferably be evaluated analytically, but this can only
be done in certain cases, usually for planar and low-order elements, and
simple fundamental solutions. However, boundary element integrals are
generally evaluated by numerical integration due to its versatility. Be-
fore performing the numerical integration, some analytical transforma-
tion (subdivision, change of variables, integration by parts) may be ap-
plied in order facilitate the computation, or even being able to evaluate
the integral at all. The number of developed mathematical and computa-
tional techniques for handling boundary element integrals is quite large,
see e.g. [20], and these focus mainly on two of the most problematic
ones: nearly (or quasi) singular integrals and singular integrals, which
can contain a weak, strong or hyper singularity. Strongly singular and
hypersingular integrals can be reduced to weakly singular integrals, other
non-singular (possibly nearly singular) integrals and analytical terms via
regularization procedures like the use of simple solutions (regularization
before discretization) [4, 6, 1] or the use of subtraction and addition of
integrand expansions via Guiggiani’s method (regularization after dis-
cretization) [8, 9, 12, 7].

For weakly singular integrals over surface elements, many approaches
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have been devised, from which the classical quadrilateral-to-triangle de-
generated mapping [14] and the use of polar coordinates properly deals
with the problem. In both cases, the element is subdivided into trian-
gular regions with vertices at the element vertices and at the collocation
point. They suffer from two serious defects which affect their efficiency:
dependency on the location of the collocation point and element shape
(aspect ratio and skewness). The first defect arises from strong quasi–
singularities in the angular coordinate, and it can be treated with clas-
sical techniques such as h− and/or p− refinement [18] or non-linear
transformations [13, 19]. The second defect also also arises from quasi–
singularities appearing when tangent vectors along local coordinates are
neither equal nor orthogonal at the collocation point, i.e. not confor-
mal. Rong et al. [19] proposed a conformal polar transformation which
imposes exactly this condition for triangular elements. They used sig-
moidal transformations from Johnston [11] in order to treat the strong
quasi–singularities. However, there is a previous exact transformation
proposed by Khayat et al. [13] which completely cancels out these. Rong
et al. [19] reported that their experience showed that Khayat’s transfor-
mation generally is worse than sigmoidal transformations, but there was
no clear reasoning why this was happening. Therefore, there is a theo-
retical gap between both works which we aim to fill.

In the present work, Rong’s conformal polar transformation is gener-
alized for quadrilateral elements in a different fashion to Lv et al. [15].
Also, four novel non-linear transformations which completely removes
the strong angular quasi-singularities are proposed and theoretically and
numerically studied. These ingredients are put together to make a robust
and efficient numerical scheme.

The rest of the paper is organized as follows. In Section 2, the pro-
posed numerical scheme is described in detail. Section 3 presents and
compares the novel and previous non-linear transformations for treating
the strong angular quasi-singularities. In Section 4, the methodology is
used in a number of examples for both triangular and quadrilateral ele-
ments. Finally, conclusions are given in Section 5.

2 Numerical integration scheme
The numerical integration scheme is based on polar coordinates transfor-
mation with a set of additional transformations which makes it robust, ef-
ficient and applicable to both triangular and quadrilateral elements. The
presence of two known sources of angular quasi–singularities deteriorate
the performance of basic polar coordinates transformations. These two
sources of quasi–singularities are:

Primary Angular quasi–singularities appearing when the collocation
point approaches the element edges. This is due to the severe
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change of the distance between the collocation point and the el-
ement edge when the collocation point is close the element edge.

Secondary Angular quasi–singularities appearing on elements with
high aspect ratios and skewness. This is due to the distortion of po-
lar coordinates mapping between the reference space and the real
space in the limit r→ 0 when using conventional polar coordinates
transformations.

A graphical summary of the proposed numerical scheme is depicted in
Fig. 1. It consists of the following six transformations described step-
by-step as follows:

1. Transformation from the element reference space to the real space
Tg : ξ → x:

x(ξ ) =
Nn

∑
k=1

φ
(k) (ξ ) ·x(k) (1)

where Nn is the number of nodes of the geometric interpolation, and
φ (k) (ξ ) and x(k) are respectively the shape function and position
vector of node k. The Jacobian Jg of the transformation of areas
(dΓ = Jg dξ1 dξ2) is the usual:

Jg =

∣∣∣∣ ∂x
∂ξ1
× ∂x

∂ξ2

∣∣∣∣= ∣∣∣Tξ

1 ×Tξ

2

∣∣∣= ∣∣∣Nξ

∣∣∣ (2)

where Tξ

1 and Tξ

2 are the tangent vectors of curvilinear coordinates
ξ1 and ξ2 respectively, and Nξ is the corresponding normal vector
of the tangent plane.

2. Transformation from the subdivision reference space to the subdi-
vision Sd on the element reference space TSd : ζ → ξ :

ξ = ξ
i +SSd

ζ (3a)

SSd =

(
ξ
(1)−Sd
1 −ξ i

1 ξ
(2)−Sd
1 −ξ i

1
ξ
(1)−Sd
2 −ξ i

2 ξ
(2)−Sd
2 −ξ i

2

)
(3b)

where the Jacobian is JSd = |∂ (ξ1,ξ2)/∂ (ζ1,ζ2)|= det(SSd). The
element is subdivided at this transformation into NS subdivisions,
i.e. d = 1, . . . ,NS. Therefore, from this point on, transformations
are subdivision-dependent and denoted using superscript Sd. In
order to deal with arbitrary locations of the collocation point, the
element subdivision pattern is based on splitting the element into
triangles using the collocation point as the common vertex, and the
other vertices at the element vertices. Fig. 2 shows this classical
subdivision pattern, where each triangular subdivision are denoted
as Sd. In the general case, there are as many triangles as element
edges, except when the collocation point is located at an edge or
a vertex, in which cases respectively one or two of the triangles
degenerate and does not contribute to the integral.

3. Transformation from the conformal subdivision space to the subdi-
vision reference space TCd : η → ζ :

ζ = CSd
(

η−η
i−Sd

)
(4a)

CSd =

(
−1 (η i−Sd

1 −1)/η
i−Sd
2

1 −η
i−Sd
1 /η

i−Sd
2

)
(4b)

where the Jacobian JCd = |∂ (ζ1,ζ2)/∂ (η1,η2)| is simply:

JCd = 1/η
i−Sd
2 (5)

The purpose of this transformation is to suppress the secondary
quasi–singularities. The idea is to provide an advantageous space
where polar coordinates have a conformal map to the real space.
To the authors’ best knowledge, this idea can be traced back to the
work of Hayami et al. [10] (PART method) for quasi-singular in-
tegrals, who introduced the polar coordinates in a projection of the
element onto a plane with normal coincident with the normal of the
element at the point nearest to the collocation point. In this way,
the mapping of polar coordinates to the real space is very good
throughout the element, i.e. there is an approximate proportion-
ality between ρ and r with very small dependence on the angular
coordinate. More recently, Rong et al. [19] used the same idea for
singular integrals, but only at collocation points where this map-
ping goodness is imposed through the exact fulfilment of confor-
mality conditions. Rong et al. [19] developed this methodology for
triangular elements, while Lv et al. [15] did the same for quadri-
lateral elements. The present scheme however allows the treatment
of both types of elements.

The location of the collocation point in the η space, i.e. η i−Sd ,
is such that conformality of polar coordinates is present at the col-
location point in the real space. For each subdivision d, η i−Sd

must fulfill the following conformality conditions at the colloca-
tion point:

I Equal length:(
Tη

1
)i ·
(
Tη

1
)i
=
(
Tη

2
)i ·
(
Tη

2
)i (6)

II Orthogonality:(
Tη

1
)i ·
(
Tη

2
)i
= 0 (7)

where:(
Tη

j

)i
=

(
∂x

∂η j

)i
=

(
∂x
∂ξl

)i
∂ξl

∂ζk

∂ζk

∂η j
= Tξ

l SSd
lk CSd

kj (8)

where j,k, l = 1,2 and Einstein summation convention is implied.
The solution can be written as:

η
i−Sd
1 =−

albk

[(
Tξ

l

)i
·
(

Tξ

k

)i
]

alak

[(
Tξ

l

)i
·
(

Tξ

k

)i
] (9)

η
i−Sd
2 =

√√√√√√√
blbk

[(
Tξ

l

)i
·
(

Tξ

k

)i
]

alak

[(
Tξ

l

)i
·
(

Tξ

k

)i
] −(η

i−Sd
1

)2
(10)

where a j = ξ
(2)−Sd
j −ξ

(1)−Sd
j and b j = ξ

(1)−Sd
j −ξ i

j, and the nota-
tion is such that summation convention expands independently for
numerator and denominator.

4. Transformation from polar coordinates space to conformal subdi-
vision space TPd : (ρ,θ)→ η :

η = η
i−Sd +

{
ρ cosθ

ρ sinθ

}
(11)

where the Jacobian JPd = |∂ (η1,η2)/∂ (ρ,θ)| is:

JPd = ρ (12)

As it is well-known, the resulting Jacobian is proportional to
the radial coordinate ρ , and thus cancels out the weak singula-
rity 1/r. The domain of polar coordinates is (ρ,θ) ∈

[
0, ρ̄Sd]×
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Figure 1: Proposed numerical scheme
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Figure 2: Subdivision pattern

[
θ (1)−Sd ,θ (2)−Sd

]
, where:

ρ̄
Sd =−

η
i−Sd
2

sinθ
(13a)

θ
(1)−Sd = π + arccos

η
i−Sd
1√(

η
i−Sd
1

)2
+
(

η
i−Sd
2

)2
(13b)

θ
(2)−Sd = 2π− arccos

1−η
i−Sd
1√(

1−η
i−Sd
1

)2
+
(

η
i−Sd
2

)2
(13c)

It is also known that θ ∈ (π,2π), sinθ < 0 and η
i−Sd
2 > 0 unless the

subdivision degenerates, in which case the subdivision area is zero

and it does not contribute to the integral. At this point, it is possible
to perform the classical Taylor expansion [8] of rk = xk − xi

k at
ρ = 0 in terms of ρ and θ :

rk = ρ (Ak +Bkρ + . . .) (14)

where Ak = (∂xk/∂ρ)i, Bk = (∂ 2xk/∂ρ2)i/2, etc, and:

Ak =

(
∂xk

∂η1

)i
cosθ +

(
∂xk

∂η2

)i
sinθ (15)

Bk =
1
2

(
∂ 2xk

∂η2
1

)i

cos2
θ +

(
∂ 2xk

∂η1∂η2

)i

sinθ cosθ

+
1
2

(
∂ 2xk

∂η2
2

)i

sin2
θ (16)

etc. Therefore, the distance expansion becomes:

r =
√

rkrk = ρ
√

AkAk +2AkBkρ + . . . (17)

where summation convention is implied. As a consequence, the
distance has the following asymptotic behavior:

lim
ρ→0

r = ρ
√

AkAk

= ρ

√
K11 cos2 θ +K22 sin2

θ +2K12 cosθ sinθ (18)

where constants Kij are obtained from:

Kij =

(
∂xk

∂ηi

)i(
∂xk

∂η j

)i
=
(
Tη

i
)i ·
(

Tη

j

)i
(19)
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(a) Conventional polar transf.

x1

x2

(b) Conformal polar transf.

Figure 3: Mapping of polar coordinates onto real space. Pla-
nar 4-node quadrilateral element with ξ1 and ξ2 isolines in black,
and ρ and θ isolines in red. Collocation point is located at
ξ

i = (1/3,1/3).

By squaring and reordering Eq. (18), the well-known oblique el-
lipse described by Guiggiani et al. [8] can be obtained. The canon-
ical weak singularity 1/r can be written as:

lim
ρ→0

1
r
=

1

ρ

√
K11 cos2 θ +K22 sin2

θ +2K12 cosθ sinθ

(20)

which exhibits the previously mentioned secondary quasi–
singularities when K11 � K22 or K22 � K11 (high aspect ratios)
or |K12| � 0 (high skewness). However, since the conformality
conditions from Eqs. (6) and (7) are imposed, it is straightforward
to see respectively that K11 = K22 and K12 = 0. This means that
the oblique ellipse described by Guiggiani et al. [8] is no longer an
ellipse but a circle, which guarantees a shape independent cancel-
lation of the weak singularity and the removal of secondary quasi–
singularities completely. Fig. 3 illustrates for a general planar 4-
node quadrilateral element how the limit expressed in Eq. (18)
behaves for conventional (Fig. 3a) and conformal (Fig. 3b) po-
lar transformations. In the latter case, lines of constant ρ become
circles as ρ (and r) tends to zero, leading to a perfect mapping of
polar coordinates onto the real space in the limit as ρ → 0.

5. Transformation from altered polar coordinates to polar coordi-
nates TAd : (ρ, θ̃)→ (ρ,θ). It performs a non-linear transforma-
tion of the angular coordinate in order to treat the primary an-
gular quasi–singularities produced at next and final transforma-
tion (transformation 6). The radial coordinate remains unaltered.
At this point of the paper, it is considered as a generic trans-
formation θ = θ(θ̃) with Jacobian JAd = ∂θ/∂ θ̃ , and domain

θ̃ ∈
[
θ̃ (1)−Sd , θ̃ (2)−Sd

]
. Previously proposed non-linear transfor-

mations like Khayat’s transformation [13] or sigmoidal transfor-
mations [19, 15] can be used at this step (see A). In this paper,
four robust and efficient novel transformations are proposed (see
Section 3).

6. Transformation from normalized polar coordinates to altered polar
coordinates TUAd : (ρ ′,θ ′)→

(
ρ, θ̃

)
:{

ρ

θ̃

}
=

{
0

θ̃ (1)−Sd

}
+

(
ρ̄Sd 0

0 ∆θ̃ Sd

){
ρ ′

θ ′

}
(21)

where ∆θ̃ Sd = θ̃ (2)−Sd− θ̃ (1)−Sd , and the Jacobian of the transfor-

mation JUAd =
∣∣∂ (ρ, θ̃)/∂ (ρ ′,θ ′)

∣∣ is:

JUAd = ρ̄
Sd

∆θ̃
Sd =−

η
i−Sd
2

sinθ
∆θ̃

Sd (22)

The presence of sinθ in the denominator produces the primary
quasi–singularities, which are treated by the previous transforma-
tion 5. Eventually, a Gauss–Legendre product rule of Nρ ×Nθ

points is applied in this region (ρ ′,θ ′) ∈ [0,1]× [0,1].

It is possible to condense transformations 2, 3 and 4 and use a straight-
forward transformation TRd : (ρ,θ)→ ξ :

ξ = ξ
i +SSd ·CSd

{
ρ cosθ

ρ sinθ

}
= ξ

i +RSd
{

ρ cosθ

ρ sinθ

}
(23a)

with Jacobian proportional to the radial coordinate ρ:

JRd = ρ

(
ξ
(1)−Sd
1 −ξ i

1

)(
ξ
(2)−Sd
2 −ξ i

2

)
−
(

ξ
(2)−Sd
1 −ξ i

1

)(
ξ
(1)−Sd
2 −ξ i

2

)
η

i−Sd
2

(23b)

After applying all these transformations, the numerical integration of a
weakly singular integrand f ∼ O(1/r) over a given element becomes:

I =
∫

Γ

f dΓ =
NS

∑
d=1

∫ 1

0

∫ 1

0
f
(
ρ
′,θ ′
)

Jg
(
ρ
′,θ ′
)

JRdJAdJUAd dρ
′ dθ

′

≈
NS

∑
d=1

Nρ

∑
kρ=1

Nθ

∑
kθ=1

f (kρ ),(kθ ) J(kρ ),(kθ )
g JRd JAd JUAd w(kρ ) w(kθ )

(24)

where f (kρ ),(kθ ) = f
(

ρ ′(kρ ),θ ′(kθ )
)

and J(kρ ),(kθ )
g = Jg

(
ρ ′(kρ ),θ ′(kθ )

)
.

Coordinates and weights of radial and angular quadrature rules are re-
spectively denoted as ρ ′(kρ ),w(kρ ) and θ ′(kθ ),w(kθ ). The integration
of any other singular integral with a higher singularity order can be
performed via regularization before or after discretization, which turns
the original singular integral into weakly singular surface integrals and
quasi-singular line integrals. The most general method is perhaps the
regularization after discretization, which was originally developed by
Guiggiani et al [8, 9, 12, 7]. A more elegant but more restricted method is
the regularization before discretization, typically using simple solutions
and Stokes’ theorem, see e.g. [4, 6, 1].

3 Non-linear transformations for pri-
mary angular quasi–singularities

As it was previously mentioned, primary angular quasi–singularities are
those strong quasi–singularities emerging when the collocation point is
near an element edge or vertex. This issue has been treated via h (inte-
gration domain subdivision) and/or p (adaptive quadrature rule) refine-
ment [18], and non-linear transformations [13, 19, 15]. The h- and p-
refinement essentially treat the issue by increasing the number of integra-
tion points. The use of non-linear transformations is much more appro-
priate since a high reduction of the number of integration points may be
achieved. However, their efficiency vary with the integrand since some
excel with weakly singular kernels and others excel with hypersingular
kernels (after regularization). In this section, four novel transformations
are presented and analytically compared against others present in the lit-
erature, which have also been adapted to the present scheme (see A).
Furthermore, more insight is given for explaining why there seems not
to be a definitive non-linear transformation for all kinds all kernels.

In the proposed scheme, the primary quasi–singularities appear in the
Jacobian JUAd , see Eq. (22). In particular, they are produced by the
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Figure 4: Primary angular quasi–singularities

factor −1/sinθ , which, taking into account that θ ∈ (π,2π), contain
strong quasi-singularities that are located θ = π and θ = 2π , see Fig. 4.

These singularities are fixed in the θ space, and thus they becomes
more relevant as the integration limits θ (1)−Sd → π+ and/or θ (2)−Sd →
(2π)−, i.e. as the location of the collocation point approach a vertex
(only one quasi–singularity emerges) or edge (quasi–singularities at both
ends emerge). Fig. 5 shows how the location of the singularity in the
conformal subdivision space (η i−Sd) influences the relevance of primary
quasi–singularities.

There exists a transformation that exactly cancels out these quasi–
singularities, and it appeared in Khayat et al. [13], although it is not
clear if they were aware of this fact. Khayat’s transformation is here
denoted as the arctanexp transformation, and it has been adapted to the
present scheme, see A. It also has the remarkable property of transform-
ing shape functions into combinations of hyperbolic functions, which
leads to integrands of more simple analytical form than other transfor-
mations. This transformation is optimal in the sense of removing these
quasi–singularities, and it is a priori the ultimate choice for this purpose.

Rong et al. [19] proposed the use of a particular family of sigmoidal
functions due to Johnston [11]. They are [0,1] onto [0,1] transformations
which concentrate integration points at θ = π and θ = 2π . Sigmoidal
transformations of order 2 (denoted as sig2 here) and 3 (denoted as sig3
here) have been adapted to the present scheme, see A. As Rong et al. [19]
and Lv et al. [15] shown, they work very well in practice, being sig3 the
best for weakly singular kernels and sig2 the best for hypersingular ker-
nels. Rong et al. [19] also reported that their experience showed that
Khayat’s transformation performs worse than their proposed sigmoidal
transformations, especially for hypersingular kernels. Nonetheless, re-
sults supporting and discussing this at first surprising behavior were not
presented. Our results (Section 4) confirm Rong et al. [19] findings.
Interestingly, in the context of BEM quasi-singular integrals, Ma and
Kamiya [16] also found that the exact distance transformation for hyper-
singular kernels underperforms the use of other weaker distance trans-
formation applied to hypersingular kernels.

The main difference between weakly singular, strongly singular and
hypersingular kernels (after regularization) is their degree of complexity.
If these kernels are expressed in terms of Guiggiani’s polar expansions,
e.g. through Eq. (14) and so forth, it is clear that kernels become increas-
ingly more intricate rational functions with higher powers of trigonome-
tric functions of θ as the main ingredient. Therefore, when the whole
integrand in terms of quadrature coordinates ρ ′ and θ ′ is considered,
it becomes increasingly more important how smoothly the non-linear
transformation transforms trigonometric functions and kernels than how
it is able to cancel the mentioned angular quasi–singularities.

Figs. 6 and 7 show how each of the previous transformations works
for two critical locations of the collocation point η i = (0.50,0.01) and
η i = (0.50,0.00001). For now, lets consider only linear, arctanexp, sig2
and sig3 transformations, and ignore the rest. The first column shows
the angular coordinate transformation θ(θ ′), the second column shows
the product of the quasi-singular term −1/sinθ and the Jacobian of the

0
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0 1
0

10

π θ(1) θ(2) 2π

0

1

0 1
0

10

π θ(1) θ(2)

0

1

0 1
0

10

θ(1) θ(2)

η
2

η1

(ηi
1,ηi

2)

−1
/s
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θ

θ [rad]

η
2

η1

(ηi
1,ηi

2)

−1
/s

in
θ

θ [rad]

η
2

η1

(ηi
1,ηi

2)

−1
/s

in
θ

θ [rad]

Figure 5: Influence of η i−Sd on the relevance of primary quasi–
singularities. Top: non-relevant primary quasi–singularities
(η i = (0.50,0.75)). Center: one-end primary quasi–singularity
(η i = (0.15,0.10)). Bottom: two-end primary quasi–singularities
(η i = (0.50,0.10)).

transformation (JA) normalized by its value at θ ′ = 0.5, and the third
and fourth columns how sinθ and cosθ are transformed. It becomes
very clear that the exact cancellation of primary quasi–singularities via
the arctanexp transformation implies a drastic distortion of trigonome-
tric functions. It turns the sine function into a peak-like function, and
the cosine function into a step-like function. Sigmoidal transformations
weaken the quasi–singularities without completely removing them. In
fact, by developing these transformations (see A), it is possible to show
that in terms of the altered angular coordinate θ̃ :

lim
θ̃→∓1

−1
sinθ

JA =
m

1± θ̃
(25)

where m = 2,3 is the transformation order. This demonstrates that the
strong quasi–singularities remain there, although they have been moved
away. Despite not canceling the quasi-singularities, the resulting trigo-
nometric functions are smoother than those resulting from the arctanexp
transformation. Also, it is observed that sig2 transformation is smoother
than sig3, which justifies why it works better with hypersingular ker-
nels where trigonometric functions become more relevant. These re-
sults show the need of finding more transformations with different trade-
offs between both factors, but in any case completely free from quasi-
singularities.

With this idea in mind, an exhaustive search of alternative sigmoid
functions whose Jacobians smoothen quasi–singularities to a different
extent has been performed. From this search, several novel transfor-
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mations able to consistently achieve better performance than sigmoidal
functions have been found.

3.1 tanh transformation
It is considered a Jacobian of the form:

JA = (θ −π)(2π−θ) (26)

which contain the two zeros that cancel out the strong singularities of the
quasi-singular term −1/sinθ . The transformation which produces such
a Jacobian is a hyperbolic tangent transformation (tanh transformation):

θ =
3π

2
+

π

2
tanh

(
π

2
θ̃

)
(27)

where lim
θ̃→±∞

θ(θ̃) = 3π/2± π/2. In terms of the altered angular
coordinate θ̃ , the product of the quasi-singular term and the Jacobian JA
can be written as:

−1
sinθ

JA =
−1

sin
(
3π/2+π/2 · tanh

(
π/2 · θ̃

)) π2

4cosh
(
π/2 · θ̃

)2 (28)

whose limit when θ̃ →±∞ is:

lim
θ̃→±∞

−1
sinθ

JA = π (29)

showing a full removal of the singularities in the altered angular coor-
dinate space. This asymptotic behavior is shown in Fig. 8. Since the
hyperbolic tangent function is a rescaled version of the well-known lo-
gistic function (1+ exp(−x))−1, the transformation can also be written
in terms of this.

3.2 erf transformation
It is considered a transformation based on another well-known sigmoid
function, the error function, which leads to the following error function
transformation (erf transformation):

θ =
3π

2
+

π

2
erf θ̃ (30)

where lim
θ̃→±∞

θ(θ̃) = 3π/2± π/2. This transformation asymptoti-
cally removes the singularities at θ = π and θ = 2π . This is demon-
strated by expanding (−1/sinθ) · JA in the limit θ̃ →±∞:

−1
sinθ

JA =−
√

πe−θ̃ 2

sin
(
3π/2+π/2 · erf θ̃

) (31)

lim
θ̃→±∞

−1
sinθ

JA =±2θ̃ (32)

which are plotted in Fig. 8.

3.3 tanhsinh transformation
By inserting the sinh function inside the tanh transformation, the follow-
ing transformation is achieved (tanhsinh transformation):

θ =
3π

2
+

π

2
tanh

(
sinh θ̃

)
(33)

where lim
θ̃→±∞

θ(θ̃) = 3π/2±π/2. This type of transformation is also
called a Double-Exponential (DE) transformation [17], and it has a long
history for evaluating integrals using the trapezoidal formula in a very
efficient manner and with arbitrary precision. When it is applied to the
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present problem, it is found that singularities are removed with the fol-
lowing asymptotics:

−1
sinθ

JA =
π

2
cosh θ̃[

cosh
(
sinh θ̃

)]2 cos
(

π

2 tanh
(
sinh θ̃

)) (34)

lim
θ̃→±∞

−1
sinθ

JA = e±θ̃ (35)

where the exponential asymptotic behavior is not problematic since for
double precision calculations θ

(
θ̃
)
− π < 10−15 and 2π − θ

(
θ̃
)
<

10−15 are obtained respectively at θ̃ ≈ −3.5 and θ̃ ≈ 3.5, and thus
(−1/sinθ) · JA is kept in a well-behaved domain. Fig. 8 illustrates Eqs.
(34) and (35), where it can be observed that the resulting (−1/sinθ) ·JA
is completely free from end-point singularities.

3.4 erfsinh transformation
By inserting the sinh function inside the erf transformation, the following
transformation is proposed (erfsinh transformation):

θ =
3π

2
+

π

2
erf
(
sinh θ̃

)
(36)

where lim
θ̃→±∞

θ(θ̃) = 3π/2±π/2. This transformation also removes
the singularities and it has the following asymptotic behavior:

−1
sinθ

JA =−
√

πe−(sinh θ̃)2
cosh θ̃

sin(3π/2+π/2 · erf(sinh θ̃))
(37)

lim
θ̃→±∞

−1
sinθ

JA =
1
2

e±2θ̃ (38)

which is illustrated in Fig. 8. As in the previous case, the exponen-
tial asymptotic behavior is not problematic since for double precision
calculations θ

(
θ̃
)
− π < 10−15 and 2π − θ

(
θ̃
)
< 10−15 are obtained

respectively at θ̃ ≈ −2.4 and θ̃ ≈ 2.4, and thus (−1/sinθ) · JA is well-
behaved.

The five transformations arctanexp, tanh, erf, tanhsinh and erfsinh
differ in how strictly they smooth out the problematic −1/sinθ term.
All these transformations remove the quasi-singularities. In particular,
arctanexp transformation produces an exact cancellation, tanh transfor-
mation produces an asymptotically exact cancellation (horizontal asymp-
tote), erf transformation leaves a linear term (oblique asymptote), and
tanhsinh and erfsinh transformations leave an exponential term (expo-
nential asymptotics). In this sense, they increasingly relax how good is
the cancellation of this problematic term. Now, if Figs. 6 and 7 are ob-
served again, it can be seen than the effects of these new transformations
are somehow in between the arctanexp and sig2 transformations.

The most remarkable difference of these new transformations is that
they remove the quasi-singularities (like the arctanexp transformation)
while at the same time produce transformed trigonometric functions
smoother than the arctanexp transformation (like sigmoidal functions).

4 Results and discussion
In this section, the numerical integration scheme proposed in Section 2
and the non-linear transformations presented in Section 3 are used to
show the robustness and efficiency of the proposed methodology.

4.1 Triangular elements
In this section, the proposed algorithm is used to solve the example pro-
posed by Rong et al. [19] for triangular elements. Their results are
obtained by using sigmoidal transformations, while in the present work
also the four transformations proposed in Section 3 are used.

The original example studies the influence of the collocation point
location, element aspect ratio and type of kernel (weakly singular and
hypersingular) for a quadratic triangular element extracted from a cylin-
drical surface. Four collocation points are considered: a) ξ

i = (0.3,0.3)
(approximately in the center),b) ξ

i = (0.1,0.8) (near a vertex), c) ξ
i =

(0.45,0.45) (near an edge) and d) ξ
i = (0.64,0.31) (very close to an

edge). The element aspect ratio is controlled via the length s, which for
s = 0.5 leads to a triangle with an aspect ratio near 1 and for s = 10
leads to an aspect ratio approximately 10. Fig. 9 shows the resulting
parametrized triangular element. Four integrals are being considered in
the present paper. The weakly singular integrals IH and IG are taken from
the Singular Boundary Integral Equation for scalar wave propagation:

IH =
∫

Γ

−e−ikr

4π

(
1
r2 +

ik
r

)
∂ r
∂n

φ dΓ (39)

IG =
∫

Γ

e−ikr

4π

1
r

φ dΓ (40)

where i is the imaginary unit, k is the wavenumber, and φ is a shape
function (in this example is φ = ξ 2

2 ). The hypersingular integral IM and
weakly singular integral IL are taken from the Hypersingular Boundary
Integral Equation for scalar wave propagation:

IM =
∫

Γ

e−ikr

4π

[(
3
r3 +

3ik
r2 +

(ik)2

r

)
∂ r
∂n

∂ r
∂ni

+

(
1
r3 +

ik
r2

)
(n ·ni)

]
φ dΓ (41)

IL =
∫

Γ

−e−ikr

4π

(
1
r2 +

ik
r

)
∂ r
∂ni φ dΓ (42)

where n is the unit normal at the observation point and ni is the unit nor-
mal at the collocation point. The hypersingular integral IM is regularized
via Guiggiani’s method [9].

Figs. 10 and 11 show the convergence of the proposed numerical
integration scheme when evaluating IG and IM for s = 0.5, collocation
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Figure 9: Parametrized triangular element extracted from cylin-
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points a to d and wavenumber k = 2. Ordinates represent the relative
error ε = |Inum− Iref|/|Iref| in a logarithmic scale, where Inum is eval-
uated using Nθ integration points in the angular coordinate and Nρ = 6
integration points in the radial coordinate, and Iref is evaluated using
Nθ = Nρ = 32 with tanhsinh transformation. For each case, the ob-
tained convergence curves for linear transformation (no treatment for the
primary quasi–singularities), and non-linear transformations arctanexp,
sig2, sig3, tanh, erf, tanhsinh and erfsinh are shown using solid lines.
Results obtained by Rong et al. [19] are indicated by markers and they
show good agreement with the results presented in this paper. In all
cases, the conformality conditions at the collocation point are enforced,
so that secondary quasi-singularities are completely removed.

Fig. 10 shows the convergence results for the integral IG. It can be
seen that all non-linear transformations drastically reduce the required
Nθ for a given relative error, especially for collocation points near the
element boundary (collocation points b, c and d). However, it is shown
that arctanexp and tanh transformations excels in this regard, although
tanh one is somewhat better. It is also observed that sig3 and erf trans-
formations have virtually the same convergence rates for all collocation
points, while erfsinh and sig2 transformations are clearly the worse. As
expected, it can be seen that differences among non-linear transforma-
tions increases as the collocation point is closer to the element boundary.

Fig. 11 shows the convergence results for the integral IM. It is ob-
served that all non-linear transformations significantly reduces the re-
quired Nθ for a given relative error. However, this reduction is smaller
than for the integral IG. This result was explained in Section 3, where
it was argued that the integration of hypersingular kernels is more sen-
sitive to how trigonometric functions are transformed than in the cases
of weakly singular and strongly singular kernels. In this sense, the opti-
mal transformation in removing the primary quasi-singularities, i.e. the
arctanexp transformation, is also the transformation that lose more per-
formance, and is not much better than the linear transformation. This
result is in agreement with what Rong et al. [19] reported. The tanh
transformation also goes from being the best for IG to be the second
worse for IM. Unlike for IG, sig2 transformation performs somewhat
better than sig3 transformation for IM. Finally, it is observed that the
efficacy of erf transformation is consistently similar to that of the sig2
transformation. tanhsinh transformation achieves the best convergence,
while erfsinh becomes the second best.

In order to study the sensitivity to the element aspect ratio, Table 1
shows the required number of integration points in the angular direc-
tion Nθ for different values of s (aspect ratio of the element) in order to
achieve a relative error ε = 10−8. The collocation point a is used, and the
considered wavenumber is k = 0. The column on the right indicates the
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Nθ s = 0.5 s = 1.5 s = 2 s = 4 s = 10 Avg.

IG

sig2 9 10 11 14 18 12.4
sig3 8 9 9 11 14 10.2

arctanexp 8 9 11 14 16 11.6
tanh 7 8 8 11 14 9.6

erf 8 9 10 11 13 10.2
tanhsinh 9 10 11 13 15 11.6

erfsinh 9 11 12 14 17 12.6

IH

sig2 8 9 9 12 15 10.6
sig3 9 10 11 13 18 12.2

arctanexp 10 14 16 18 25 16.6
tanh 9 11 12 15 19 13.2

erf 8 10 10 13 16 11.4
tanhsinh 8 9 9 11 12 9.8

erfsinh 8 9 10 12 13 10.4

IL

sig2 9 9 10 12 15 11.0
sig3 9 10 11 13 18 12.2

arctanexp 10 14 15 18 25 16.4
tanh 9 11 11 15 19 13.0

erf 8 10 10 13 16 11.4
tanhsinh 9 9 10 11 13 10.4

erfsinh 9 10 11 12 14 11.2

IM

sig2 11 12 12 13 17 13.0
sig3 11 13 14 16 20 14.8

arctanexp 13 17 19 21 29 19.8
tanh 12 14 16 19 22 16.6

erf 11 11 12 14 18 13.2
tanhsinh 9 9 10 11 14 10.6

erfsinh 8 8 10 11 13 10.0

Table 1: Required Nθ to make relative error below 10−8 (colloca-
tion point a and wavenumber k = 0)

average Nθ from the previous columns, and the overall best non-linear
transformation is in bold. It is observed that the previously described
performance rank order of non-linear transformations is more or less the
same. The tanh transformation is the best for IG, tanhsinh transforma-
tion is the best for IH and IL, and the erfsinh transformation is now the
best for IM. For IG it is obtained that transformations smoother than tanh
increasingly requires more Nθ . On the other hand, for IM it is seen that
transformations smoother than tanh increasingly requires less Nθ . For
IH and IL the optimal transformation is tanhsinh, and Nθ increases for
smoother and less smoother transformations.

4.2 Quadrilateral elements
In this section, the proposed algorithm is used to solve the example pro-
posed by Lv et al. [15] for quadrilateral elements. Their results are
obtained by using sigmoidal transformations, while in this work also
the four transformations proposed in Section 3 are considered. Integrals
IG,IH, IL and IM from Section 4.1 are again considered, but it is assumed
that k = 0 and φ = 1 in all cases. These integrals are evaluated over a
highly distorted eight-node quadrilateral with an aspect ratio of approxi-
mately 4 (more details can be found in [15]).

Fig. 12 shows the relative error when evaluating IG, IH, IL and IM for
collocation points located along a line from ξ

i = (0,0) (element center)
to ξ

i = (1,1) (element vertex) with ξ i
1 = ξ i

2 = ξ i. The number of integra-
tion points for each triangular subdivision is fixed to Nθ = Nρ = 10. It is
observed that there is a strong dependency of the relative error on the lo-
cation of the collocation point. Peaks and notches of relative error occur
at certain locations which may vary with the non-linear transformation
used. Integral IG was also solved by Lv et al. [15] using sigmoidal trans-
formations, and it can be seen that there is a close agreement between
both results. As in the previous case, it is observed that tanh transforma-
tion is generally better than the exact arctanexp transformation, which
is the worst in all cases except for IG. However, it is not seen that the
tanh transformation excels for the weakly singular kernel (IG), perhaps
due to the absence of the shape function in the integrand. The theoretical
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Number of integrations points for each triangular subdivision is
Nθ = Nρ = 10.

results from Section 3 are clearly seen for IG. It is seen that particularly
sig2 loses quite a bit of performance as the collocation point is nearer
to the element vertex. This is also seen for sig3, erf sinh and tanhsinh
to a lesser extent. For integrals IH, IL and IL results are very similar,
showing a clear performance rank order where erfsinh is the best. The
use of non-linear transformations is not crucial in these cases, although
there is a pronounced performance lost as the collocation point is nearer
the element vertex for the linear transformation, especially for IH and
IL. Therefore, in these cases non-linear transformations basically make
relative error less dependent on the location of the collocation point.

Fig. 13 shows the convergence of the average relative errors εavg as
integration points N = Nθ = Nρ for each triangular subdivision increase.
The average relative error εavg is calculated from relative errors for the
different locations of the collocation point, which is an indicator of the
overall convergence of each non-linear transformation. Results show that
non-linear transformations are indispensable for all integrals except for
IM. For IG, erf has the best convergence rate, followed by tanhsinh and
sig3 transformations. The worst in this case is the sig2 transformation.
For the rest of integrals, the best non-linear transformation is erfsinh,
followed by tanhsinh and sig2 transformations.

5 Conclusions
In this paper, it is proposed a numerical scheme for triangular and quadri-
lateral elements based on a conformal polar transformation and four
novel non-linear transformations which completely removes all sources
of angular quasi-singularities.

It is shown that there is no optimal non-linear transformation for all
kernels. The most versatile solution is hence equipping the algorithm
with many non-linear transformations in the arsenal, which are chosen
depending on the integrand and some previous tests. In this sense, the
four non-linear transformations proposed are the more robust and effi-
cient since not only it has been demonstrated that they asymptotically
remove these quasi-singularities but they also generally outperform sig-
moidal transformations. From all, the tanhsinh transformation is consis-
tently highly ranked in all the examples, and this should be the choice if
only one should be selected.
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A Other non-linear transformations for
primary angular quasi–singularities

arctanexp transformation Among other transformations, Khayat et
al. [13] proposed the use of an arctanexp (or conversely ln tan) transfor-
mation. Taking into account that singularities are present at θ = π and
θ = 2π , for the present scheme it can be written as:

θ = π +2arctan
(
exp
(
θ̃
))

, θ̃ = ln
(

tan
(

θ −π

2

))
(43)

where lim
θ̃→−∞

θ(θ̃)= π and lim
θ̃→+∞

θ(θ̃)= 2π . The Jacobian JAd =

∂θ/∂ θ̃ is:

JAd =−sinθ =
1

cosh θ̃
(44)
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Figure 13: Convergence of average relative error εavg when using
N = Nθ = Nρ integration points for each triangular subdivision

and the domain θ̃ ∈
[
θ̃ (1)−Sd , θ̃ (2)−Sd

]
is given by:

θ̃
(1)−Sd = ln tan

θ (1)−Sd −π

2
, θ̃

(2)−Sd = ln tan
θ (2)−Sd −π

2
(45)

Therefore, it maps θ̃ ∈ [θ̃ (1)−Sd , θ̃ (2)−Sd ] onto θ ∈ [π,2π]. This transfor-
mation can also be written in terms of the Gudermannian function, and
also in a number of combinations between trigonometric and hyperbolic
functions and its inverses due to their relationships. Khayat’s arctanexp
transformation completely removes the strong quasi–singularities since
its Jacobian (Eq. (44)) cancels it out perfectly (JAd · JUAd is a constant).

Any integrand from static parts of fundamental solutions can ulti-
mately be written in terms of elementary trigonometric functions sinθ

and cosθ . Unlike other transformations, this transformation transform
trigonometric functions into simple hyperbolic functions:

sinθ =− 1
cosh θ̃

, cosθ = tanh θ̃ (46)

which may facilitate future numerical analyses of this transformation.

Sigmoidal transformations of order m Rong et al. [19] pro-
posed the use of sigmoidal transformations taken from [11]. These sig-
moidal transformations are rational functions which allow the concentra-
tion of integration points at the end-points of the interval. For the present
scheme, the sigmoidal transformation of order m can be written as:

θ = π +π

(
θ̃+1

2

)m(
θ̃+1

2

)m
+
(

1− θ̃+1
2

)m (47)

which maps θ̃ ∈ [−1,1] onto θ ∈ [π,2π]. The actual integration limits
θ̃ (1)−Sd and θ̃ (2)−Sd are found by inverting Eq. (47) and substituting θ

by θ (1)−Sd and θ (2)−Sd respectively. For the case m = 2, θ̃(θ) can be
written in a very simple form:

θ̃ =
π/2−

√
(θ −π)(2π−θ)

θ −3π/2
(48)

The Jacobian JAd = ∂θ/∂ θ̃ in this case becomes:

JAd = π

(
1− θ̃

)(
1+ θ̃

)(
1+ θ̃ 2

)2 (49)

For the case m = 3, θ̃(θ) is a lengthy expression, but the Jacobian can
be written as:

JAd =
3π

2

(
1− θ̃

)2 (1+ θ̃
)2(

1+3θ̃ 2
)2 (50)
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