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INTRODUCTION AND BACKGROUND

.

1

1.1 Introduction
Pile foundations are usually selected as the structural supporting system employed to transmit
the structural loads to the surrounding soil. Normally, this type of foundation is used when
the soil has a poor bearing capacity, when rocks or more rigid strata are found at deeper
levels of the terrain, or when the supported construction is subjected to large horizontal loads
or upwards vertical loads. An additional benefit of the use of pile foundations is that they
can improve the structural seismic response. The deeply-buried elements generally filter the
seismic motion imposed by the ground and also increase the damping of the foundation-
structure system. For these reasons, this type of foundation is normally chosen for large tall
buildings, bridge piers and for marine structures or platforms that need to cover significant
water depths. Regarding this last typology, it is important to highlight that foundations using
a single monopile or several groups of piles are the most common solution for supporting the
structures of offshore wind turbines.

There exist numerous expressions and approximate computational methods that can be
used for the design and study of piles. Despite in the past most of these strategies were limited
to the static behaviour of the foundations, during the last decades a large number of studies
have focused on the analysis and modelling of the dynamic behaviour of pile foundations.
However, there is still a lack of understanding in some of the phenomena that are involved
in the dynamic behaviour of this foundation type. Also, more parametric studies of how the
response of the piles are affected by some properties of the soil-foundation system, such as the
soil profile and its features, need to be conducted. Furthermore, the study of the changes in the
dynamic characteristics and behaviour of piled structures that are produced by the flexibility
of the foundation (referred to as soil-structure interaction) is also a rising research direction
inside the structural field.

The objective of the present Ph. D. Thesis is to develop an efficient numerical model for
the dynamic analysis of pile foundations in non-homogeneous soils. The soil non-homogeneity
is considered in terms of a horizontally layered domain. The formulation of the proposed
model is based on the same integral approach that results in the Boundary Element Method
in order to take advantage of its benefits for representing the physics of the problem. Specif-
ically, the chosen strategy is to incorporate a fundamental solution for the layered half space
into a previous Boundary Element - Finite Element (BE-FE) coupling formulation. In this
previous model, the soil, considered as an infinite medium, is discretized through standard
boundary elements. On the other hand, the piles are modelled as classic beam finite elements.
In order to directly solve the coupled problem, additional coupling equations are introduced
between the piles and soil, and between the piles and the pile caps. These equations are ob-
tained from compatibility and equilibrium conditions in terms of the representative degrees
of freedom, with a meaning that is more or less direct depending on the methodology (BE or
FE) used to represent the behaviour of the studied regions.

In order to improve the abilities and versatility of the previous model, advanced funda-
mental solutions for the layered half space are introduced in the formulation that represents
the soil dynamic behaviour. This way, it would be possible to avoid any meshing of the free-
surface or layer interface boundaries. Thus, the size of the problem is drastically reduced.
Also, the uncertainties related to the surface meshes, such as setting the size of the elements
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or the quantity of soil that needs to be discretized, are also avoided.
Regarding the proposed model, it should not be referred to as a boundary element formu-

lation as:

• The strategy used for the pile-soil coupling (which is identical to the one of the previ-
ous model) does not imply any boundary variable of the soil. No discretization of the
interface between the pile and the soil is made, but the interaction forces are treated as
body forces acting inside the soil domain.

• In the case that a pile cap is considered, it is assumed not to be in contact with the soil.

• The boundary conditions at each layer interface and at the free-surface are already
satisfied by the new fundamental solution, so there is no need to discretize these regions.

Therefore, the developed tool should be better referred to in terms of a collocation method-
ology based on the integral formulation of the soil problem. In this integral model, only the
piles are discretized through beam finite elements and the degrees of freedom of the problem
are limited to pile displacements and soil-pile tractions representing the interaction between
these two media. Thus, all of the variables of the integral model are defined along the pile
axes.

As mentioned before, this new model is an incremental step inside the work direction
followed by the Research Group of the Continuum Mechanics and Structures Division of
the SIANI Institute of the University of Las Palmas de Gran Canaria. This group has been
developing models for solving wave equations in continuum media for more than 30 years.
The key methodology is the Boundary Element Method. The research line started from the
works of Alarcón y Domínguez from the University of Sevilla [1–5]. The close collaboration
between the groups of the two universities resulted in the development of a boundary element
code for solving three-dimensional problems in the frequency domain [6–8]. This multi-
region model was further developed [9], including the possibility of including poroelastic
regions as well as viscoelastic media. This advance in the numeric tool allowed the study of
the influence of the presence of porous sediments on the dynamic behaviour of arch dams
[10–12], as well as the effects derived from the spatial nature of the excitation found in the
seismic response of this dam type [13, 14]. Regarding the analysis of pile foundations, the
boundary element model was also used to obtain the impedance functions of single piles and
pile groups both in viscoelastic and poroelastic soils [15,16]. In order to study this problem,
the discretization of the interface between the pile and soil regions introduced a large number
of degrees of freedom, limiting the application of the model only to the analysis of small pile
configurations.

With the intention to have more efficient numeric tools to tackle the problem of the dy-
namic analysis of pile foundations, in the Ph. D. Thesis work of Padrón [17] a coupled
boundary element - finite element (BE-FE) model was formulated and implemented. Based
on the idea presented in the static model of Mendonça et al. [18–20], the interaction between
soil and pile was reduced to a set of tractions acting over a load line inside the soil domain,
while the flexibility of piles was taken into account through their modelling with finite el-
ements. This way, as mentioned before, the treatment of piles as dimensionless load lines
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avoids the discretization of the interfaces between them and the soil. This BE-FE coupling
model also had the possibility of considering structures supported by the pile foundations.
The efficiency and versatility of that tool allowed numerous studies related to the dynamic
behaviour of pile foundations and piled structures [21–30].

As the reader figures out, this BE-FE model is, precisely, the starting point of the present
Ph. D. Thesis work. Despite the treatment of piles as dimensionless load lines implies a huge
saving in the variables corresponding to the soil-pile interfaces, the BE-FE model still needs to
discretize the soil free-surface and, in case of considering soil profiles with several strata, the
layer interfaces. Therefore, the application of the former model to treat soils with non-uniform
properties is limited to profiles with a reduced number of different layers. As mentioned
before, the model developed in the present document is aimed to solve this limitation. For this
purpose, the fundamental solution for the unbounded viscoelastic medium used by Padrón’s
BE-FE model is substituted with an advance fundamental solution for the layered half space
that already satisfies the boundary conditions of these soils. As result, a formulation only in
terms of the pile variables is obtained. This evolution of the Research Group models for the
study of pile foundations is depicted in Fig. 1.1.

BE model [16] BE-FE model [21] integral model [31]

Figure 1.1: Evolution of the numerical models used by the Research Group for the analysis
of pile foundations. Adapted from [32].

At this point, it is important to highlight that the current Ph. D. Thesis work has been
developed with a close collaboration with Prof. R. Gallego and Prof. A.E. Martínez-Castro
from the University of Granada (Spain). This way, it has been possible to incorporate their
large experience in the development of fundamental solutions for the viscoelastic layered
media [33, 34] into the developed work.

Finally, it is worthy to comment that in parallel to the work developed within the field of
pile foundations, the Research Group of the Continuum Mechanics and Structures Division
continues to develop several numerical model for the study of wave propagation problems
that are of high interest in the engineering field. Optimization of noise barriers by combin-
ing Genetic Algorithms and boundary element codes [35–37], or the study of buried shell
structures through the coupling of boundary and finite elements [38–40] are some of these
applications based on hypersingular or dual boundary element formulations.

Instituto Universitario SIANI 5



1
.

INTRODUCTION AND BACKGROUND

1.2 Aims and objectives
The aim of the present research is to develop and implement a numerical model based on the
integral formulation of the elastic problem and the use of an advance fundamental solution
for the layered half space, and its application to the dynamic analysis of pile foundations and
piled structures.

The half space (in general, layered) is modelled through a numerical collocation strategy,
while the piles are treated as beam finite elements. The developed software will significantly
reduce the computational requirements, allowing the study of problems that cannot be han-
dled with the previous tools available for the Research Group.

In order to fulfil this main objective, the following partial objectives have to be considered:

Formulation and implementation:

• Study of the theoretical framework and formulation of the advanced fundamental so-
lution for the layered half space. Familiarization with the code modules that compute
this type of fundamental solutions.

• Formulation and implementation of a numerical model that includes the new funda-
mental solution. This formulation will be based on the same ideas and strategies that
were used in the previous BE-FE code.

• Validation of the model. Study the applicability range of the model and the numerical
technique (problems related with the behaviour of the fundamental solution, or with the
discretization of continuously varying soil profiles). Comparison with available results
corresponding to different problems and configurations.

• Formulation and implementation of numerical strategies aimed at optimizing the per-
formance and computational requirements of the developed code.

Application of the developed model:

• Characterization of the dynamic properties of pile foundations in terms of their stiffness
and damping impedance functions in the frequency domain. Study of the influence of
the variability of the soil profile on these variables.

• Study of the kinematic interaction factors of pile configurations. Analysis of the influ-
ence of the variability of the soil profile.

• Study of kinematic bending moments for single piles and pile groups embedded in
stratified soils and subjected to seismic waves.

• Study of the soil-structure interaction effects on the dynamic characterization of struc-
tures for offshore wind turbines by using substructuring techniques.

• Analysis of the performance of pile barriers as ground vibration mitigation measures.
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Research communications:

• Diffusion of the obtained results to the scientific community through publications in
referred journals and international conferences.

1.3 Framework. Research Project BIA2014-57640-R1

The present Ph. D. Thesis was part of the Research Project BIA2014-57640-R supported
by the Subdirección General de Proyectos de Investigación of the Ministerio de Economía y
Competitividad (MINECO) of Spain and the European Regional Development Fund (ERDF)
or, in Spanish, Fondo Europeo de Desarrollo Regional (FEDER). The project is entitled “Ad-
vances in the development of numerical models for the dynamic characterisation of wind
turbines”.

The support structures for wind turbines should be designed keeping away the natural fre-
quencies of the system from the frequency content of the principal dynamic loads to which
they are subjected: unbalance loads from the rotor, shadowing effects from the passing blades
and the spectra of wind and, for offshore wind turbines, wave loads. One of the sub-system
that involves great uncertainties and simplifications in its analyses is the soil-foundation sys-
tem, especially in the case of deep foundations. On the other hand, as the number of land-
based and offshore wind farms increases, it is becoming more frequent to install new farms in
sites where the soil has poorer characteristics, requiring the use of deep foundations such as
piles and suction caissons (also referred to as buckets). This situation is completely general-
ized for the case of offshore wind turbines, being foundations based on monopiles or groups
of piles or buckets the standard technical solutions. As an example, Fig. 1.2 shows some of
the more common types of foundations for offshore wind turbines depending on the water
depth.

The facts stated before explain the need to develop computational models able to estimate
the dynamic properties of the afore-mentioned foundation types in a more efficient and ac-
curate way than it is done with the current design tools. This will contribute to the design of
optimal and safer wind turbine structures with longer service lifetimes (due to lower fatigue
loading), helping to reduce the cost per unit of energy and to improve the profitability of this
technology.

In order to contribute in this direction, the objective of the Research Project is to develop
two computational models that will allow more accurate dynamic analyses of the two types
of foundations mentioned above:

• Objective 1. A model for the dynamic analysis of pile foundations in layered soils,
through the development and implementation of a collocation methodology based on
the integral formulation of the problem for the soil and making use of an advanced

1Adapted from the abstract of the Scientific Report for the application of the Research Project. Accepted
on 27/07/2015 by Secretaría de Estado de Investigación, Desarrollo e Innovación del Ministerio de Economía
y Competitividad (Spain). Project duration: 3 years (2015-2017).
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Figure 1.2: Typical foundations for offshore wind turbines in shallow (left), moderately deep
waters (centre) and deep waters (right). Adapted from [41].

three-dimensional fundamental solution for the layered half space. (Present Ph. D.
Thesis)

• Objective 2. A model for the dynamic analysis of buried thin laminar flexible struc-
tures such as suction caissons, through the development and implementation of a dual
formulation of the Boundary Element Method coupled to shell finite elements. (J.D.R.
Bordón’s Ph. D. Thesis [41]).

Both goals imply developments related to the Boundary Element Method, which is es-
pecially suitable for the study of unbounded media such as the soil. The achievement of
the first goal allows the study of piled foundations in stratified soils without requiring any
meshing of the surrounding soil boundaries or domains, in such a way that only the piles
will be discretized by using beam finite elements. This will allow tackling problems with
complex stratigraphies that are computationally unapproachable using the formulations and
codes developed so far by the research team. The second goal implies the formulation and
implementation of boundary element codes that make use of a dual formulation, combin-
ing the standard singular boundary integral equation for viscoelastic and poroelastic media,
with its hypersingular form. This allows the numerical treatment of problems involving thin
inclusions with reduced computational costs and high accuracy.

The two developed models will be used to contribute to the scientific knowledge related
to the dynamic characterization of wind turbine foundations, both land based and offshore in
shallow and moderately deep waters.

1.4 Published works derived from the Ph. D. Thesis
Some of the work conducted during the realization of the present Ph. D. Thesis have con-
tributed to different publications and communications. This section lists these contributions.
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1.4.1 Contributions in JCR journals
• G. M. Álamo, L. A. Padrón, J. J. Aznárez and O. Maeso. Structure-soil-structure in-

teraction effects on the dynamic response of piled structures under obliquely incident
seismic shear waves. Soil Dynamics and Earthquake Engineering, 78:142–153, 2015

• G. M. Álamo, A. E. Martínez-Castro, L. A. Padrón, J. J. Aznárez, R. Gallego and
O. Maeso. Efficient numerical model for the computation of impedance functions of
inclined pile groups in layered soils. Engineering Structures, 126:379–390, 2016

• M. Faghihnia Torshizi, M. Saitoh, G. M. Álamo, C. S. Goit and L. A. Padrón. Influence
of pile radius on the pile head kinematic bending strains of end-bearing pile groups.
Soil Dynamics and Earthquake Engineering, 105:184–203, 2018

• G. M. Álamo, J. D. Bordón, J. J. Aznárez and O. Maeso. Relevance of soil-pile tangen-
tial tractions for the estimation of kinematic seismic forces: Formulation and setting of
a Winkler approach. Applied Mathematical Modelling, 59:1–19, 2018

• G. M. Álamo, J. J. Aznárez, L. A. Padrón, A. E. Martínez-Castro, R. Gallego and
O. Maeso. Dynamic soil-structure interaction in offshore wind turbines on monopiles
in layered seabed based on real data. Ocean Engineering, 156:14–24, 2018

• G. M. Álamo, J. J. Aznárez, L. A. Padrón, A. E. Martínez-Castro and O. Maeso. Impor-
tance of using accurate soil profiles for the estimation of pile kinematic input factors.
Journal of Geotechnical and Geoenvironmental Engineering, (under review), submit-
ted on Dec 2017

• C. Medina, G. M. Álamo, J. J. Aznárez, L. A. Padrón and O. Maeso. Variations in the
dynamic properties of structures founded on piles induced by obliquely incident SV
waves. Earthquake Engineering & Structural Dynamics, (under review), submitted on
May 2018

1.4.2 Conference contributions
• F. García, G. M. Álamo, L. A. Padrón, J. J. Aznárez and O. Maeso. Rigidez dinámica

de cimentaciones tripilote para aerogeneradores marinos. In Congress of Numerical
Method in Engineering (CMN 2015). Lisbon, Portugal, 29 June – 2 July 2015

• L. A. Padrón, C. Medina, G. M. Álamo, J. J. Aznárez, A. Santana, O. Maeso, F. García
and F. Chirino. Pilotes inclinados: situación normativa y ventajas e inconvenientes de
su uso en proyectos de edificación en zonas con riesgo sísmico. In 19th International
Congress on Project Management and Engineering. Granada, Spain, 15–17 July 2015

• G. M. Álamo, J. D. R. Bordón, F. García, J. J. Aznárez, L. A. Padrón, F. Chirino
and O. Maeso. Revisión de modelos numéricos para el estudio del comportamiento
dinámico de cimentaciones profundas para el diseño y proyecto de aerogeneradores.
In 20th International Congress on Project Management and Engineering. Cartagena,
Spain, 13–15 July 2016
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• G. M. Álamo, J. J. Aznárez, L. A. Padrón, A. E. Martínez-Castro, R. Gallego and
O. Maeso. Dynamic response of real offshore wind turbines on monopiles in stratified
seabed. In VII European Congress on Computational Methods in Applied Sciences and
Engineering (ECCOMAS 2016). Crete, Greece, 5–10 June 2016

• F. García, G. M. Álamo, L. A. Padrón, J. J. Aznárez and O. Maeso. Influencia del com-
portamiento poroelástico del fondo marino en la rigidez dinámica de cimentaciones
pilotadas para aerogeneradores offshore. In XXI Congreso Nacional de Ingeniería
Mecánica (CNIM). Elche, Spain, 9–11 November 2016

• G. M. Álamo, M. Saitoh, C. S. Goit, L. A. Padrón, J. J. Aznárez and O. Maeso. Pile-
to-pile kinematic interaction factors for vertically-incident shear waves. In 2nd Global
Conference on Applied Computing in Science and Engineering (ACSE2). Las Palmas
de Gran Canaria, Spain, 26–28 July 2017

• G. M. Álamo, J. J. Aznárez, L. A. Padrón, A. E. Martínez-Castro, R. Gallego and
O. Maeso. Integral model for the analysis of pile foundations in stratified soils. In
2nd Global Conference on Applied Computing in Science and Engineering (ACSE2).
Las Palmas de Gran Canaria, Spain, 26–28 July 2017

• M. Castro, J. D. R. Bordón, G. M. Álamo and J. J. Aznárez. Formulation and cali-
bration of a pasternak model for seismic analysis of pile foundations. In 2nd Global
Conference on Applied Computing in Science and Engineering (ACSE2). Las Palmas
de Gran Canaria, Spain, 26–28 July 2017

• R. Quevedo, G. M. Álamo, J. J. Aznárez, L. A. Padrón and O. Maeso. Simplified
model to calculate the envelopes of bending moments along offshore wind turbines on
monopiles. In 2nd Global Conference on Applied Computing in Science and Engineer-
ing (ACSE2). Las Palmas de Gran Canaria, Spain, 26–28 July 2017

• G. M. Álamo, A. E. Martínez-Castro, L. A. Padrón, J. J. Aznárez, R. Gallego and
O. Maeso. A proposal for normalized impedance functions of inclined piles in non-
homogeneous media. In X International Conference on Structural Dynamics (EURO-
DYN 2017). Rome, Italy, 10–13 September 2017

• G. M. Álamo, J. J. Aznárez, L. A. Padrón, A. E. Martínez-Castro, R. Gallego and
O. Maeso. Direct model for the dynamic analysis of piled structures on non-homogeneous
media. In 1st Conference on Structural Dynamics (DinEst 2018). Madrid, Spain, 20–21
June 2018

1.4.3 Book Chapter contributions
• G. M. Álamo, J. D. R. Bordón, F. García, J. J. Aznárez, L. A. Padrón, F. Chirino and

O. Maeso. Review of numerical models for studying the dynamic response of deep
foundations for the design and project of wind turbines. In J. L. Ayuso, J. L. Yagüe and
S. F. Capuz-Rizo, editors, Project Management and Engineering Research. AEIPRO
2016, In Press. Springer International Publishing, 2018
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1.5 Structure of the dissertation
The present document is divided into 7 chapters, starting with the current introduction and
ending with a summary of the main conclusions and future directions drawn from this piece of
research. Because along the dissertation several problems of different nature will be handled,
specific state-of-the-art revisions are presented at the beginning of each chapter instead of a
single one at the beginning of the document. Following the introduction, the formulation of
the proposed model is presented in the second chapter. Then, the developed tool is applied in
the rest of the chapters to study several problems of engineering interest related to the dynamic
behaviour of pile foundations and piled structures. After the main text, several appendices
are presented with complementary information and results that enrich the research work. The
last of these appendices is a summary of the work in Spanish. In the following, the contents
of each chapter are briefly detailed.

The core of the developed work is presented in Chapter 2. This chapter starts with the
main hypotheses that are assumed in the proposed numerical formulation. Then, the beam
elements used for the discretization of the piles are presented together with their finite element
equilibrium equations. Also, the additional equations that are used in order to couple the
pile heads to a rigid cap are given. Then, the soil formulation is presented, explaining the
benefits of using the particular fundamental solution for the layered half space. Regarding
the computation of the soil equations, some numerical aspects are highlighted, including
the details of the particular strategy used in the developed code to significantly speed up
the computational time. Then, the modifications of these soil equations that are required in
order to introduce either the presence of an incident wavefield or external loads acting over
the free-surface are detailed. Finally, the formulation is closed by introducing the coupling
between the pile and soil equations. At the end of this chapter, a validation of the developed
tool is presented and its limitations are discussed. For this purpose, a comparison in terms
of maximum seismic bending moments and shear forces is made against a boundary element
model and a Winkler model specifically developed for this purpose. Despite presenting there
this validation, other verification problems are conducted in Chapters 3, 4 and 5, which are
adapted to the contents of each one of these chapters.

In Chapter 3 the impedance problem of reduced pile groups with inclined elements is
tackled. The chapter is aimed at studying the influence of the variability of the soil profile
on the stiffness and damping functions of the foundation. For this purpose, the results cor-
responding to the homogeneous half space profile are compared with the ones obtained for
different soils whose shear wave velocity varies with depth following a power law. The results
are presented through dimensionless graphs.

Following a similar direction that the previous chapter, Chapter 4 studies the influence of
the variability of the soil profile on the seismic response of pile foundations. In this chapter,
typical physical dimensions of piles are considered together with variable soil profiles that
are representative to actual sites. The results obtained for these real soils are compared with
the ones corresponding to a homogeneous medium with the mean properties recommended
by several codes. The influence of the variability of the soil profile is studied both in terms
of kinematic interaction factors and the maximum response spectra that a single degree of
freedom oscillator atop of the foundation would present. Also, it is also analysed whether
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these equivalent mean soil properties can be used to estimate the maximum kinematic bending
moments of the piles.

Chapter 5 introduces a problem that is relatively different from the ones studied before,
but with high interest and application in civil engineering. In this chapter, instead of using
the piles as a foundation system, they are arranged in the soil as a measure to mitigate the
propagation of ground vibrations. Particularly, and taking advantage of the characteristics
of the developed model, the study is focused on how the performance of the pile barrier is
affected by the presence of a rigid stratum at certain depth inside the soil.

The last application chapter is closely related to the Research Project in which this Ph.
D. Thesis is developed. In this Chapter 6, the problem of the dynamic characterization of
monopiled offshore wind turbines is tackled. The integral model is used to compute the
impedance functions of the monopiles and then, through a substructuring methodology, the
changes in the fundamental frequency and damping ratio of the pile-structure system due to
the flexibility of the foundation are quantified. Properties of several soil profiles and structural
dimensions of offshore wind turbines that can be found in the literature are used in order to
define the studied systems.

The main body of the document ends with Chapter 7, where a brief summary and the
main conclusions drawn from this work are presented. Also, some future research directions
based on the work conducted during these years are proposed.

After these chapters, several appendices are presented with supplementary results or com-
plementary formulations that enrich the content of the Ph. D. Thesis. It is important to high-
light the last Appendix D, which gives a brief summary in Spanish of the principal aspects
of the work.

The document ends with the list of bibliographical references ordered by their appearance
in the text.
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2.1 Introduction and general hypotheses
This chapter presents the formulation of the integral model that is developed for the analysis
of pile foundations in layered soils. Before presenting the formulation corresponding to piles
and soil, this section introduces the main hypothesis and ideas on which the proposed model
is based.

The developed model is formulated in the frequency-domain and, therefore, within the
scope of linear elasticity. The soil behaviour is modelled by using the integral expression of
the reciprocity theorem in elastodynamics and specific Green’s functions for the layered half
space. Thus, the soil is considered to be formed by a finite number of zoned homogeneous,
isotropic, hysteretic layers overlying a semi-infinite half space (unbounded domain).

Following the idea of Mendonça et al. [18–20] and the previous BE-FE model [17], piles
are reduced to one-dimensional beam elements. The interaction between the soil and each pile
is represented by three distributed tractions acting over the load lines that correspond to the
piles. These distributed forces, henceforth referred to as soil-pile interaction tractions, will
represent the resultants of the tractions that are acting over the actual interface surface that
exists between the pile and the surrounding media (see Fig. 2.1). The integration of these
tractions implies that some interaction phenomena cannot be reproduced by the simplified
model, such as the local effect of the vertical tangential tractions that results in a distributed
moment action over the pile. Note that as the soil-pile interaction tractions represent a global
distributed force, it cannot be directly compared to the stress tensor of the internal points
of the soil. On contrary, in the integral expression of the reciprocity theorem, the soil-pile
interaction tractions are considered as body forces acting along the load lines inside the soil
domain. It is important to highlight that the loss of dimension of the piles also implies that
no geometrical diffraction effects can be captured by the proposed formulation.

On the other hand, the pile mid-line displacements that define the deformation of the
beam can be directly compared to the displacements of the corresponding points of the soil
(see Fig. 2.1). Welded conditions are assumed for the pile-soil contact, so these mid-line
displacements of the beam section completely coincide with the soil displacements. On the

Figure 2.1: Simplification of the pile geometry. Treatment of the pile deformed shape (left)
and the soil-pile interaction tractions (right).
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other hand, there is no direct relation between the rotations of the pile cross-section and any
soil variable.

The additional stiffness and mass introduced by the piles into the soil system are taken into
account by considering their beam finite element equilibrium equations, in which the action
of the soil-pile interaction tractions is also included. These equations couple the bending
rotations of the piles with the lateral displacements and forces and, therefore, the pile-soil
interaction will be affected by them. However, for the pile torsional motion the developed
model does not include any interaction mechanism between the pile and the soil. Therefore,
the pile torsional mode is neglected in the proposed formulation.

Finally, pile groups can be formed by connecting the pile heads through a rigid cap. In this
case, no contact is assumed between the cap and the soil, so all the foundation-soil interaction
is limited to the one produced along the piles.

In the following, the detailed equations corresponding to the modelling of piles and soil
are obtained. After this process, and at the end of the chapter, a validation of the developed
model is presented in order to discuss up to what point the simplifications made affect the
capability of the integral model to analyse the pile dynamic behaviour.

2.2 Pile finite element equations
As mentioned before, piles are modelled through finite elements as one-dimensional beam
elements. This way, the rigidity effects of the piles and their response to the loads transmitted
by the soil are obtained by solving the classical finite element equilibrium equation. Assuming
harmonic displacements and forces, and hysteretic material damping for the beam elements,
the pile system of equations results in:

(𝐊 (1 + 2i𝛽𝑝) − 𝜔2𝐌) 𝐮 = 𝐅 (2.1)

where 𝐊 and 𝐌 are the stiffness and mass matrices obtained from the assembly of the el-
emental ones, 𝐮 is the vector containing the complex amplitude of the degrees of freedom
that determine the motion of the beam (nodal displacements and rotations), 𝐅 is the vector
containing the complex amplitude of nodal external forces acting over the beams, 𝛽𝑝 is the
pile hysteretic damping coefficient, 𝜔 is the angular frequency of the excitation, and i is the
imaginary unit. Note that in this expression, and in the rest of the document, the term ei𝜔𝑡 is
omitted for simplicity’s sake.

2.2.1 Pile elements
Piles are discretized into 2-noded elements whose motion is determined through 10 degrees-
of-freedom, which are depicted in Fig. 2.2. As mentioned in Section 2.1, the pile torsion
is not considered in the proposed formulation because no mechanism of interaction with the
soil is contemplated for this vibration mode.

The lateral displacements and rotations along each element of the pile are modelled through
cubic 𝜓𝑢 and quadratic 𝜓𝜃 shape functions, respectively. These shape functions are chosen
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Figure 2.2: Pile element degrees-of-freedom.

in order to satisfy the static equation of the Timoshenko’s Beam [59] and can be expressed in
terms of the dimensionless axial coordinate 𝜉 = 𝑧/𝐿𝑒 as:

𝜓𝑢1(𝜉) = 1
(1 + 𝜙) (2𝜉3 − 3𝜉2 − 𝜙𝜉 + (1 + 𝜙)) (2.2a)

𝜓𝑢2(𝜉) = 𝐿𝑒
(1 + 𝜙) (𝜉3 − (2 + 𝜙

2 )𝜉2 + (1 + 𝜙
2 )𝜉) (2.2b)

𝜓𝑢3(𝜉) = −1
(1 + 𝜙) (2𝜉3 − 3𝜉2 − 𝜙𝜉) (2.2c)

𝜓𝑢4(𝜉) = 𝐿𝑒
(1 + 𝜙) (𝜉3 − (1 − 𝜙

2 )𝜉2 − 𝜙
2 𝜉) (2.2d)

𝜓𝜃1(𝜉) = 6
(1 + 𝜙) 𝐿𝑒

(𝜉2 − 𝜉) (2.3a)

𝜓𝜃2(𝜉) = 1
(1 + 𝜙) (3𝜉2 − (4 + 𝜙)𝜉 + (1 + 𝜙)) (2.3b)

𝜓𝜃3(𝜉) = −6
(1 + 𝜙) 𝐿𝑒

(𝜉2 − 𝜉) (2.3c)

𝜓𝜃4(𝜉) = 1
(1 + 𝜙) (3𝜉2 − (2 − 𝜙)𝜉) (2.3d)

So the lateral displacements and rotations inside each pile element are defined in terms
of the nodal values 𝑢(𝑛

𝑖 , 𝜃(𝑛
𝑖 (𝑖 = 𝑥, 𝑦 and 𝑛 = 1, 2) as:

𝑢𝑥(𝜉) = 𝜓𝑢1(𝜉) 𝑢(1
𝑥 + 𝜓𝑢2(𝜉) 𝜃(1

𝑦 + 𝜓𝑢3(𝜉) 𝑢(2
𝑥 + 𝜓𝑢4(𝜉) 𝜃(2

𝑦 (2.4a)

𝑢𝑦(𝜉) = 𝜓𝑢1(𝜉) 𝑢(1
𝑦 − 𝜓𝑢2(𝜉) 𝜃(1

𝑥 + 𝜓𝑢3(𝜉) 𝑢(2
𝑦 − 𝜓𝑢4(𝜉) 𝜃(2

𝑥 (2.4b)
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𝜃𝑥(𝜉) = −𝜓𝜃1(𝜉) 𝑢(1
𝑥 + 𝜓𝜃2(𝜉) 𝜃(1

𝑦 − 𝜓𝜃3(𝜉) 𝑢(2
𝑥 + 𝜓𝜃4(𝜉) 𝜃(2

𝑦 (2.5a)

𝜃𝑦(𝜉) = 𝜓𝜃1(𝜉) 𝑢(1
𝑦 + 𝜓𝜃2(𝜉) 𝜃(1

𝑥 + 𝜓𝜃3(𝜉) 𝑢(2
𝑦 + 𝜓𝜃4(𝜉) 𝜃(2

𝑥 (2.5b)

In the previous expressions, 𝐿𝑒 is the length of the element and 𝜙 is the ratio between the
flexural and shear stiffness of the beam that is defined as:

𝜙 =
12𝐸𝑝𝐼𝑝

𝐿2
𝑒𝛼𝐺𝑝𝐴𝑝

=
24𝐼𝑝

𝐿2
𝑒𝛼𝐴𝑝

(1 + 𝜈𝑝) (2.6)

where 𝐸𝑝, 𝐺𝑝 and 𝜈𝑝 are the Young’s modulus, Shear modulus and Poisson’s ratio of the pile
material, 𝐼𝑝 and 𝐴𝑝 are the pile moment of inertia and area of the pile cross-section, and 𝛼
is shear coefficient of the pile cross-section (Timoshenko’s beam theory). It is important to
highlight that this formulation collapses into the Bernoulli’s beam theory if 𝜙 → 0.

On the other hand, the axial displacements of the pile element are approximated through
lineal shape functions 𝜑:

𝜑1(𝜉) = 1 − 𝜉 (2.7a)
𝜑2(𝜉) = 𝜉 (2.7b)

And the expression of the axial displacements inside each element is obtained in terms of
the nodal values 𝑢(𝑛

𝑧 (𝑛 = 1, 2) as:

𝑢𝑧(𝜉) = 𝜑1(𝜉) 𝑢(1
𝑧 + 𝜑2(𝜉) 𝑢(2

𝑧 (2.8)

Once the shape functions of the displacements and rotations are defined, the pile elemental
stiffness and mass matrices are directly obtained through the application of the Principle of
Virtual Displacements or the Hamilton’s principle (see [59]).

Elemental stiffness matrices

The terms of the elemental stiffness sub-matrix for the axial behaviour of the pile are
obtained from:

𝐾𝑎
𝑒𝑖𝑗 = ∫

𝐿𝑒

0
𝜑′

𝑖 𝐸𝑝𝐴𝑝𝜑′
𝑗d𝑧 𝑖 = 1, 2 (2.9)

where □′ denotes derivation with respect to 𝑧.
On the other hand, the terms of the lateral stiffness sub-matrix are obtained through:

𝐾 𝑙
𝑒𝑖𝑗 = ∫

𝐿𝑒

0
𝜓′

𝜃𝑖
𝐸𝑝𝐼𝑝𝜓′

𝜃𝑗
+ (𝜓′

𝑢𝑖 − 𝜓𝜃𝑖)𝛼𝐺𝑝𝐴𝑝(𝜓′
𝑢𝑗 − 𝜓𝜃𝑗 )d𝑧 𝑖 = 1 − 4 (2.10)

Substituting the expressions of the shape functions, the elemental axial 𝐊𝑎
𝑒 and lateral 𝐊𝑙

𝑒
stiffness sub-matrices for the pile beam elements are obtained as:

𝐊𝑎
𝑒 =

𝐸𝑝𝐴𝑝
𝐿𝑒 [

1 −1
−1 1 ]

(2.11)
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𝐊𝑙
𝑒 =

𝐸𝑝𝐼𝑝

(1 + 𝜙)𝐿3
𝑒

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

12 6𝐿𝑒 −12 6𝐿𝑒

(4 + 𝜙)𝐿2
𝑒 −6𝐿𝑒 (2 − 𝜙)𝐿2

𝑒

12 −6𝐿𝑒

symmetric (4 + 𝜙)𝐿2
𝑒

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.12)

Note that the sign criteria used for the lateral stiffness sub-matrix corresponds to the one of
the 𝑥 − 𝑧 plane. For the 𝑦 − 𝑧 plane, the signs of some terms should be properly changed
according to the criteria used for the rotations around the 𝑥 axis. As commented before, the
lateral formulation collapses into the one of a Bernoulli’s beam if 𝜙 → 0.

Elemental mass matrices

The terms of the elemental axial mass sub-matrix are obtained through:

𝑀𝑎
𝑡𝑒𝑖𝑗

= ∫
𝐿𝑒

0
𝜑𝑖𝜌𝑝𝐴𝑝𝜑𝑗d𝑧 (2.13)

where 𝜌𝑝 is the density of the pile material.
For the lateral behaviour, the contribution of both the translational and rotatory inertia

effects are considered. The terms of the elemental mass sub-matrices are obtained from:

𝑀 𝑙
𝑡𝑒𝑖𝑗

= ∫
𝐿𝑒

0
𝜓𝑢𝑖𝜌𝑝𝐴𝑝𝜓𝑢𝑗 d𝑧 ; 𝑀 𝑙

𝑟𝑒𝑖𝑗 = ∫
𝐿𝑒

0
𝜓𝜃𝑖𝜌𝑝𝐼𝑝𝜓𝜃𝑗 d𝑧 (2.14)

Note that, as the torsional mode of the pile is not included in the proposed model, the
only contribution to the rotatory inertia of the pile element corresponds to the one of its
lateral deformation.

By substituting the corresponding shape functions, the elemental axial mass sub-matrix
𝐌𝑎

𝑡𝑒 and the elemental lateral mass sub-matrix 𝐌𝑙
𝑒 = 𝐌𝑙

𝑡𝑒 + 𝐌𝑙
𝑟𝑒 are obtained as:

𝐌𝑎
𝑡𝑒 =

𝜌𝑝𝐴𝑝𝐿𝑒
6 [

2 1
1 2 ]

(2.15)

𝐌𝑙
𝑡𝑒 =

𝜌𝑝𝐴𝑝𝐿𝑒
840(1 + 𝜙)2

⎡
⎢
⎢
⎢
⎣

4(70𝜙2 + 147𝜙 + 78) 𝐿𝑒(35𝜙2 + 77𝜙 + 44) 4(35𝜙2 + 63𝜙 + 27) −𝐿𝑒(35𝜙2 + 63𝜙 + 26)

𝐿2
𝑒 (7𝜙2 + 14𝜙 + 8) 4𝐿𝑒(35𝜙2 + 63𝜙 + 26) −𝐿2

𝑒 (7𝜙2 + 14𝜙 + 6)

4(70𝜙2 + 147𝜙 + 78) −𝐿𝑒(35𝜙2 + 77𝜙 + 44)

symmetric 𝐿2
𝑒 (7𝜙2 + 14𝜙 + 8)

⎤
⎥
⎥
⎥
⎦

(2.16)
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𝐌𝑙
𝑟𝑒 =

𝜌𝑝𝐼𝑝
30(1 + 𝜙)2𝐿𝑒

⎡
⎢
⎢
⎢
⎢
⎣

36 −𝐿𝑒(15𝜙 − 3) −36 −𝐿𝑒(15𝜙 − 3)
𝐿2

𝑒(10𝜙2 + 5𝜙 + 4) 𝐿𝑒(15𝜙 − 3) 𝐿2
𝑒(5𝜙2 − 5𝜙 − 1)

36 𝐿𝑒(15𝜙 − 3)
symmetric 𝐿2

𝑒(10𝜙2 + 5𝜙 + 4)

⎤
⎥
⎥
⎥
⎥
⎦

(2.17)

Again, the sign criteria for the lateral sub-matrices correspond to the motion in the 𝑥 − 𝑧
plane and should be properly changed for the 𝑦 − 𝑧 plane.

2.2.2 External forces
The external loads acting over the pile can be divided into three components:

𝐅 = 𝐅head + 𝐅tip + 𝐅𝑞 (2.18)

being 𝐅𝑞 the forces produced due to the pile-soil interaction tractions acting along the pile
length; 𝐅head the forces acting on the pile head that can correspond either to imposed external
loads or to the forces arising due to the pile coupling with a rigid cap; and 𝐅tip the forces
acting on the pile tip due to the imposition of fixed or hinged tip boundary conditions (for
piles that reach a rigid stratum). For floating piles, always free-tip conditions are assumed.

Figure 2.3: External forces acting on the pile head and tip (left). Nodal forces for each pile
element (centre). Nodal values of the pile-soil distributed tractions acting over each element
of the pile (right).

The pile-soil interaction is modelled through a lineal distribution of tractions acting in the
three directions of the space, as depicted in Fig. 2.3. These distributed tractions are defined
for each element through their nodal values 𝑞𝑝

𝑖
(𝑛 (𝑖 = 𝑥, 𝑦, 𝑧 and 𝑛 = 1, 2) and the linear shape

functions 𝜑 (Eqs. 2.7) as:

𝑞𝑝
𝑥(𝜉) = 𝜑1(𝜉) 𝑞𝑝

𝑥
(1 + 𝜑2(𝜉) 𝑞𝑝

𝑥
(2 (2.19a)

𝑞𝑝
𝑦(𝜉) = 𝜑1(𝜉) 𝑞𝑝

𝑦
(1 + 𝜑2(𝜉) 𝑞𝑝

𝑦
(2 (2.19b)

𝑞𝑝
𝑧(𝜉) = 𝜑1(𝜉) 𝑞𝑝

𝑧
(1 + 𝜑2(𝜉) 𝑞𝑝

𝑧
(2 (2.19c)
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The nodal forces that these distributed interaction tractions produce over the pile are com-
puted as:

𝐅𝑞 = 𝐐𝐪𝑝 (2.20)

where 𝐐 is the global matrix that transforms the distributed loads into equivalent nodal ones
and 𝐪𝑝 is the vector containing the complex amplitudes of the pile-soil interaction tractions
at each node of the pile.

By using the Principle of Virtual Displacements (see, e.g., [60]), the coefficients of the
elemental sub-matrices 𝑄𝑙

𝑒, 𝑄𝑎
𝑒 related to the lateral or axial deformations of the pile can be

computed as:

𝑄𝑙
𝑒𝑖𝑗 = ∫

𝐿𝑒

0
𝜓𝑢𝑖𝜑𝑗 d𝑧 (2.21)

𝑄𝑎
𝑒𝑖𝑗 = ∫

𝐿𝑒

0
𝜑𝑖𝜑𝑗 d𝑧 (2.22)

Resulting both sub-matrices in:

𝐐𝑙
𝑒 = 𝐿𝑒

(1 + 𝜙)

⎡
⎢
⎢
⎢
⎢
⎢
⎣

( 7
20 + 𝜙

3 ) ( 3
20 + 𝜙

6 )
𝐿𝑒( 1

20 + 𝜙
24 ) 𝐿𝑒( 1

30 + 𝜙
24 )

( 3
20 + 𝜙

6 ) ( 7
20 + 𝜙

3 )
−𝐿𝑒( 1

30 + 𝜙
24 ) −𝐿𝑒( 1

20 + 𝜙
24)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(2.23)

𝐐𝑎
𝑒 = 𝐿𝑒

6 [
2 1
1 2 ]

(2.24)

note again that the signs of the coefficients of the lateral sub-matrix correspond to the ones
of the 𝑥 − 𝑧 plane.

With these considerations, the system of equations corresponding to the finite element
formulation of the piles can be written as:

(𝐊 (1 + 2i𝛽𝑝) − 𝜔2𝐌) 𝐮 − 𝐐𝐪𝑝 = 𝐅head + 𝐅tip (2.25)

2.2.3 Inclined piles
In the previous section, the formulation has been obtained considering the case of vertical
piles and, therefore, no distinction has been made between the local and global coordinate
systems. However, when dealing with configurations of inclined piles, the afore-mentioned
expressions are only valid for the pile local coordinate system. Thus, proper rotation matrices
are needed in order to transform the inclined piles elemental matrices into the global reference
system in order to conduct the assembly process.
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Figure 2.4: Typical inclined piles configurations (left). Definition of the local and global pile
coordinate systems (right).

Considering typical pile configurations (see Fig. 2.4), pile inclination can be defined
by a rotation angle 𝜃𝑝 around an axis contained in the 𝑥 − 𝑦 plane given by the direction
vector 𝐯 = {𝑣𝑥, 𝑣𝑦, 0}T. By applying Rodrigues’ rotation formula, the rotation matrix 𝐑𝑢 that
transform the local axes 𝑥̃ ̃𝑦 ̃𝑧 into the global 𝑥𝑦𝑧 reference system is obtained as:

𝐑𝑢 =
⎡
⎢
⎢
⎢
⎣

cos 𝜃𝑝 + 𝑣2
𝑥(1 − cos 𝜃𝑝) 𝑣𝑥𝑣𝑦(1 − cos 𝜃𝑝) 𝑣𝑦 sin 𝜃𝑝

𝑣𝑥𝑣𝑦(1 − cos 𝜃𝑝) cos 𝜃𝑝 + 𝑣2
𝑦(1 − cos 𝜃𝑝) −𝑣𝑥 sin 𝜃𝑝

−𝑣𝑦 sin 𝜃𝑝 𝑣𝑥 sin 𝜃𝑝 cos 𝜃𝑝

⎤
⎥
⎥
⎥
⎦

(2.26)

In order to transform the rotations and moments of the inclined beam elements, the ro-
tation matrix is modified in order to take into account the zero value condition around the ̃𝑧
axis:

𝐑𝜃 =
⎡
⎢
⎢
⎣

𝑅𝑢11 − 𝑅𝑢13
𝑅𝑢31
𝑅𝑢33

𝑅𝑢21 − 𝑅𝑢23
𝑅𝑢31
𝑅𝑢33

𝑅𝑢12 − 𝑅𝑢13
𝑅𝑢32
𝑅𝑢33

𝑅𝑢22 − 𝑅𝑢23
𝑅𝑢32
𝑅𝑢33

⎤
⎥
⎥
⎦

(2.27)

Now, by using these rotation matrices, the elemental stiffness and mass matrices in the
global coordinate system (𝐊𝑒, 𝐌𝑒) can be computed from the elemental stiffness and mass
matrices in the pile local system of reference (𝐊̃𝑒, 𝐌̃𝑒) through:

𝐊𝑒 = 𝐑−1
𝐾 𝐊̃𝑒 𝐑𝐾 (2.28)

𝐌𝑒 = 𝐑−1
𝐾 𝐌̃𝑒 𝐑𝐾 (2.29)

with

𝐑𝐾 =
⎡
⎢
⎢
⎢
⎣

𝐑𝑢 ∅ ∅ ∅
𝐑𝜃 ∅ ∅

𝐑𝑢 ∅
symmetric 𝐑𝜃

⎤
⎥
⎥
⎥
⎦

(2.30)
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On the other hand, considering that the soil-pile interaction tractions act over the three
directions of the space, but do not contain any component regarding distributed moments,
the rotation of the local elemental matrix 𝐐̃𝑒 to the global one 𝐐𝑒 is conducted through:

𝐐𝑒 = 𝐑−1
𝐾 𝐐̃𝑒 𝐑𝑞 (2.31)

with

𝐑𝑞 = [
𝐑𝑢 ∅
∅ 𝐑𝑢 ] (2.32)

2.2.4 Pile union through a rigid cap
Pile foundations with only one pile member are rarely found in engineering applications.
Normally, a group of piles are joined together by using a pile cap in order to have a wider and
stiffer foundation. For this reason, the coupling of a set of piles through a rigid cap can be
considered in the proposed model.

The pile cap is assumed to be infinitely rigid, with a mass 𝑚𝑐 and moments of inertia with
respect to the three coordinate axes 𝐼𝑐

𝑖 (𝑖 = 𝑥, 𝑦, 𝑧). The thickness of the cap is neglected (i.e.,
the cap centre of gravity and all pile heads are assumed to be located at the same level), as well
as the contact between the cap and the soil (i.e., the foundation-soil interaction is produced
only along the piles). For simplicity’s sake, the formulation corresponding to a fixed pile-cap
union is first presented. Then, the modifications needed in order to consider a hinged pile-cap
union are commented at the end of the section.

Figure 2.5: Sketch of the pile union through a rigid cap. Definition of the cap degrees of
freedom.

By considering the rigid body motion of the cap, the displacements and rotations 𝐮head
𝑝 =

{𝑢head
𝑥𝑝 , 𝑢head

𝑦𝑝 , 𝑢head
𝑧𝑝 , 𝜃head

𝑥𝑝 , 𝜃head
𝑦𝑝 }T at the head of each pile 𝑝 fixedly connected to it can be ob-

tained in terms of the three displacements and three rotations of the centre of gravity of the
cap 𝐔𝑐 = {𝑈 𝑐

𝑥 , 𝑈 𝑐
𝑦 , 𝑈 𝑐

𝑧 , Θ𝑐
𝑥, Θ𝑐

𝑦, Θ𝑐
𝑧}T as:

𝐮head
𝑝 = 𝐓𝑐

𝑝 𝐔𝑐 (2.33)
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with

𝐓𝑐
𝑝 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 −𝑟𝑝
𝑦

0 1 0 0 0 𝑟𝑝
𝑥

0 0 1 𝑟𝑝
𝑦 −𝑟𝑝

𝑥 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

(2.34)

where 𝑟𝑝
𝑖 is the relative distance of the head of pile 𝑝 with respect to the centre of gravity of

the cap in the 𝑖 direction (𝑖 = 𝑥, 𝑦), see Fig 2.5.
On the other hand, equilibrium conditions are imposed at the pile cap between external

forces, inertial forces and pile-cap reactions. These equilibrium equations can be written at
the centre of gravity of the pile cap as:

𝐅𝑐 −
𝑁𝑐

∑
𝑝=1

(𝐓𝑐
𝑝 )T 𝐅head

𝑝 + 𝜔2𝐌𝑐𝐔𝑐 = 𝟎 (2.35)

where 𝐅𝑐 = {𝐹 𝑐
𝑥 , 𝐹 𝑐

𝑦 , 𝐹 𝑐
𝑧 , 𝑀𝑐

𝑥, 𝑀𝑐
𝑦 , 𝑀𝑐

𝑧}T is the vector of external forces and torques act-
ing over the cap’s centre of gravity; 𝑁𝑐 is the number of piles that are connected to the
cap; 𝐅head

𝑝 = {𝑓 head
𝑥𝑝 , 𝑓 head

𝑦𝑝 , 𝑓 head
𝑧𝑝 , 𝑚head

𝑥𝑝 , 𝑚head
𝑦𝑝 }T is the vector containing the pile-cap reac-

tion forces and moments acting over each pile 𝑝; and 𝐌𝑐 = diag(𝑚𝑐 , 𝑚𝑐 , 𝑚𝑐 , 𝐼𝑐
𝑥, 𝐼𝑐

𝑦 , 𝐼𝑐
𝑧 ) is the

diagonal mass matrix of the cap.
The fixed pile-cap union can be modified to a hinged union just by substituting the com-

patibility equations between the pile and cap rotations in the two last rows of Eq. (2.33) with
the zero pile-cap moment reaction condition imposed by the hinged union:

𝜃head
𝑥𝑝 = Θ𝑐

𝑥

𝜃head
𝑦𝑝 = Θ𝑐

𝑦
→

𝑚head
𝑥𝑝 = 0

𝑚head
𝑦𝑝 = 0

(2.36)

2.3 Soil equations
Let 𝒮 (𝐮, 𝛔, 𝐛; 𝜔, Ω) and 𝒮 ∗(𝐮∗, 𝛔∗, 𝐛∗; 𝜔, Ω) be two different elastodynamic states that sat-
isfy the Navier equations in the domain Ω. These two states can be related by applying the
reciprocal theorem in elastodynamics [61]. Assuming harmonic conditions and zero initial
values, the integral expression of the reciprocity theorem can be written as:

∫Γ
𝐩∗𝐮 dΓ + ∫Ω

𝐛∗𝐮 dΩ = ∫Γ
𝐩𝐮∗ dΓ + ∫Ω

𝐛𝐮∗ dΩ (2.37)

being 𝐮, 𝐮∗ the displacements at any point of the domain Ω; 𝐩, 𝐩∗ the tractions acting over the
boundary Γ = 𝜕Ω compatible with the stress tensors 𝛔, 𝛔∗; and 𝐛, 𝐛∗ the body forces acting
inside the domain.

In the previous expression, 𝒮 ∗ is a known state usually referred to as fundamental solution
or Green’s functions. The choose of a proper fundamental solution can significantly simplify
the formulation of the problem. In this work, the Green’s functions developed by Pak and
Guzina [62] for the layered half space are considered as fundamental solution.

24 Integral model based on advanced fundamental solutions for the dynamic analysis of piles



INTEGRAL MODEL FOR THE ANALYSIS OF PILE FOUNDATIONS

.

2

2.3.1 Pak and Guzina’s Green’s functions for the layered half space
The fundamental solution used in the proposed model represents the response of any point of
a horizontally layered half space Ω (unbounded domain) when an unitary load is applied at
point 𝛋 (collocation point) in each direction of the space. Mathematically, each component
of the body forces that represent this point load can be expressed as:

𝑏∗
𝑘 = 𝛿(𝛋)𝛿𝑙𝑘 (2.38)

being 𝑙 the direction of the applied load, 𝛿𝑙𝑘 the Kronecker’s delta, and 𝛿(𝛋) the Dirac’s delta
defined as:

∫Ω
𝛿(𝛋) dΩ = {

1 if 𝛋 ∈ Ω
0 if 𝛋 ∉ Ω (2.39)

In their work, Pak and Guzina [62] addressed this problem by expressing the solution of
the Navier’s equations in terms of displacement potentials [63] in the cylindrical coordinate
system. The angular dependence was handled through a Fourier decomposition, while a radial
Hankel transform was used in order to obtain explicit expressions of the displacements and
stresses at any point of the domain in the transformed space. In addition to this, propagation
matrices relating the displacements and tractions at the boundaries of each layer with the ones
of the surrounding strata were used in order to model the behaviour of the layered half space.
Finally, a particular integration procedure [62, 64, 65] is required in order to evaluate the
inverse Hankel transform and obtain the desired displacements and tractions. This integration
procedure has been modified for low-frequencies based on the single layer solution problem
by Martínez-Castro and Gallego [34].

The main benefit of these Green’s functions is the fact that they use particular propagation
matrices, which do not include any unbounded exponential terms. Thus, any possible numer-
ical instabilities are avoided, yielding an accurate model with fast convergence. Furthermore,
as the fundamental solution includes the layered half space domain as part of its hypotheses,
the boundary conditions of the free-surface and layer interfaces are intrinsically satisfied.

2.3.2 Soil base equations
Once the fundamental solution is known, the reciprocity theorem can be used in order to com-
pute the unknown state 𝒮 in the domain Ω corresponding to a horizontally layered half space
(agreeing with the domain assumed for the computation of the Green’s functions). Taking
into account the definition of the body forces of the fundamental solution state, the domain
integral of the left-side of Eq. (2.37) is reduced to:

∫Ω
𝐛∗𝐮 dΩ = ∫Ω

𝛿(𝛋)𝐮 dΩ = 𝐮𝜅 (2.40)

On the other hand, the fundamental solution satisfies the free-surface boundary condition
(𝐩∗ = 0 at Γ), so the contour integral of the left-side of Eq. (2.37) vanishes:

∫Γ
𝐩∗𝐮 dΓ = 𝟎 (2.41)
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As an initial approximation, no external forces acting over the free-surface will be con-
sidered in the unknown state 𝒮 (i.e., 𝐩 = 0 at Γ), so the contour integral of the right-side of
the reciprocity theorem also vanishes:

∫Γ
𝐩𝐮∗ dΓ = 𝟎 (2.42)

Finally, the body forces of the elastodynamic state 𝒮 correspond to the pile-soil interaction
tractions 𝐪𝑠

𝑝 that act over the soil along the load lines Γ𝑝 representing the piles. Thus, the
domain integral of the right-side of the reciprocity theorem (2.37) is transformed into the
following line contour integral:

∫Ω
𝐛𝐮∗ dΩ = ∫Γ𝑝

𝐮∗𝐪𝑠
𝑝 dΓ𝑝 (2.43)

With these considerations, the reduced integral expression of the reciprocity theorem can
be written as:

𝐮𝜅 = ∫Γ𝑝
𝐮∗𝐪𝑠

𝑝 dΓ𝑝 (2.44)

Note that this expression represents three equations corresponding to each Cartesian direction
of the space. Thus, 𝐮𝜅 is a vector containing the three displacements of the collocation point
𝜅, 𝐮∗ is a tensor containing the three displacements for each direction of the punctual load,
and 𝐪𝑠

𝑝 is a vector containing the three components of the soil-pile interaction tractions.
Considering now the pile discretization, the evaluation of the integral in Eq. (2.44) can be

handled as the superposition of the contribution of each element Γ𝑒. As done for the piles (Eq.
2.19), a linear variation of the soil-pile interaction tractions inside each element is assumed.
Including these considerations, Eq. (2.44) can be evaluated as:

𝐮𝜅 =
𝑁𝑒

∑
𝑒=1 ∫Γ𝑒

𝐮∗(𝜑1𝐪𝑠(1
𝑒 + 𝜑2𝐪𝑠(2

𝑒 ) dΓ𝑒 (2.45)

being 𝑁𝑒 the total number of pile elements; and 𝐪𝑠(𝑛
𝑒 the vector containing the three amplitudes

of the interaction tractions at the node 𝑛 (𝑛 = 1, 2) of the element 𝑒.
This equation can be expressed in matrix form as:

𝐮𝜅 = 𝐆𝜅𝐪𝑠 (2.46)

being 𝐪𝑠 the vector containing the nodal values of the interaction tractions acting over the
soil, and 𝐆𝜅 the influence sub-matrix obtained from the assembly of the elemental ones that
are defined as:

𝐆𝜅
𝑒 =

[∫Γ𝑒
𝐮∗𝜑1 dΓ𝑒 ∫Γ𝑒

𝐮∗𝜑2 dΓ𝑒]
(2.47)
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Figure 2.6: Non-nodal collocation strategies. (a) Due to integrating in the same load line than
the collocation point. (b) Due to pile inclination. (c) Due to discontinuities in the soil-pile
interaction tractions.

As the fundamental solution has no explicit expressions (but is obtained through a numer-
ical iterative procedure), these integrals must be evaluated numerically through a standard
Gaussian quadrature rule.

By applying Eq. (2.46) to all pile nodes, the following system of equations is obtained:

𝐮𝑠 = 𝐆𝐪𝑠 (2.48)

being 𝐮𝑠 the vector containing the three displacements at the points of the soil that correspond
to the pile nodes, and 𝐆 the influence matrix.

2.3.2.1 Numerical aspects: non-nodal collocation strategies

The integral that needs to be evaluated in order to compute the terms of the influence matrix
(Eq. 2.47) becomes singular when the collocation point belongs to the integration element
due to the characteristics of the fundamental solution. In order to avoid this singularity, a
non-nodal collocation strategy is followed as depicted in Fig. 2.6(a). This strategy coincides
with the one proposed by Padrón et al. [21]. Four collocation points 𝜅𝑘 are used around the
central node 𝜅 in order not to break the symmetry of the problem. These points are located
at the soil-pile interface and their displacements can be expressed in terms of the ones of the
central node by using the motion equations of the pile section. By adding the contribution of
each collocation point 𝜅𝑘, the influence matrix for an element 𝑒 belonging to the same load
line than the central collocation point 𝜅 results in:

𝐆𝜅
𝑒 = 1

4

4

∑
𝑘=1

𝐆𝜅𝑘
𝑒 (2.49)

For computing the rest of terms of the influence matrices, the collocation point is assumed to
be the node 𝜅.

However, this non-nodal collocation strategy presents an issue when collocating around
the first node of an inclined pile. As depicted in Fig. 2.6(b), at least one of the collocation
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points 𝜅𝑘 will be located outside the half space domain and, therefore, the hypothesis of the
used Green’s functions will be not satisfied (the collocation point no longer belongs to the
domain). To overcome this limitation, the central point of the collocation is displaced inside
the element a quantity 𝜉𝑐 that guarantees that all of the four additional collocation points
stay inside the soil. By using Eqs. (2.4) and (2.8), the displacements of the new central
collocation point 𝜅𝑐 can be expressed in terms of the ones corresponding to the two nodes of
the first element. Thus, the soil equations of the first node of an inclined pile result in:

𝐮𝜅𝑐 = 𝚿(𝜉𝑐) [
𝐮(1

𝐮(2 ] = 𝐆𝜅𝑐 𝐪𝑠 (2.50)

where:

𝚿(𝜉𝑐) = [
𝜓𝑢1 (𝜉𝑐 ) 0 0 0 𝜓𝑢2 (𝜉𝑐 ) 𝜓𝑢3 (𝜉𝑐 ) 0 0 0 𝜓𝑢4 (𝜉𝑐 )

0 𝜓𝑢1 (𝜉𝑐 ) 0 −𝜓𝑢2 (𝜉𝑐 ) 0 0 𝜓𝑢3 (𝜉𝑐 ) 0 −𝜓𝑢4 (𝜉𝑐 ) 0
0 0 𝜑1(𝜉𝑐) 0 0 0 0 𝜑2(𝜉𝑐 ) 0 0 ] (2.51)

A similar situation is found at the points of the soil at which a discontinuity in the soil-
pile interaction tractions is assumed. This assumption is usually made when a strong variation
between the properties of two consecutive soil layers is produced. In this case, as depicted in
Fig. 2.6(c), the equations corresponding to the node 𝜅𝑞 with duplicity of 𝐪𝑠 are written two
times by displacing the collocation point a quantity 𝜉𝑞 inside the two elements to which this
point belongs. As done before, the displacements of the new collocation points are expressed
in terms of the nodal ones by using the proper shape functions:

[
𝐮𝜅−

𝑞

𝐮𝜅+
𝑞 ] = [

𝚿(1 − 𝜉𝑞) ∅
∅ 𝚿(𝜉𝑞) ]

⎡
⎢
⎢
⎣

𝐮(𝜅𝑞−1

𝐮(𝜅𝑞

𝐮(𝜅𝑞+1

⎤
⎥
⎥
⎦

= 𝐆𝜅𝑞 𝐪𝑠 (2.52)

2.3.2.2 Numerical aspects: reuse of influence sub-matrices

The computation of the influence matrix is the sub-process of the model that consumes the
main part of the computational time. This happens because of the fact that the evaluation
of the Green’s functions required for the integration is relatively slow due to the complexity
and iterative nature of the fundamental solution. This issue is magnified when increasing the
number or discretization of the piles (i.e., greater number of collocation-observation points),
being the computational time of the model of order 𝒪(𝑁2

𝑒 ), being 𝑁𝑒 the number of pile
elements. Besides, the evaluation of the fundamental solution demands more time for higher
frequencies and for problems with large distances between the observation and collocation
points or with a high number of layers.

However, as pile configurations generally present a regular disposition, a high number
of the terms of the influence matrix 𝐆 coincide or, at least, are equivalent through a sim-
ple in-plane rotation. By identifying these equivalent sub-matrices, a significant portion of
the computational time can be saved because the integrals will be computed once and then
assembled in all the corresponding positions.

Attending to the characteristics of the fundamental solution, it is known that the tensor
𝐮∗ only depends on the relative distance between the collocation and observation points, and
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Figure 2.7: Equivalent collocation-observation pile pairs. (a) Definition of relative distances
and rotation angle. (b) Additional conditions for inclined piles.

on the distances of these points to the free-surface. Taking into account this last aspect, and
noting that all nodes of the same pile are located at different depths, the reuse of the influence
sub-matrices is contemplated at a pile scale.

Let 𝑝𝑜 and 𝑝𝜅 be the observation and collocation piles, respectively. Let 𝐆𝑝𝜅
𝑝𝑜 be the sub-

matrix of 𝐆 that corresponds to the terms of the soil equations in which the collocation is
done at the nodes of pile 𝑝𝜅 , and the integration is done along the elements of pile 𝑝𝑜. Then,
two pairs of collocation-observation piles {𝑝𝜅 , 𝑝𝑜} and { ̄𝑝𝜅 , ̄𝑝𝑜} are said to be equivalent in
terms of the computation of their influence sub-matrices if the following conditions are met:

1. The geometry and discretization of pile 𝑝𝜅 coincide with the ones of pile ̄𝑝𝜅 , and the
geometry and discretization of pile 𝑝𝑜 coincide with the ones of pile ̄𝑝𝑜.

2. The radial distance |𝐫𝜅𝑜| between piles 𝑝𝜅 and 𝑝𝑜 coincide with the radial distance | ̄𝐫𝜅𝑜|
between piles ̄𝑝𝜅 and ̄𝑝𝑜. The angle between the two distance vectors is denoted as 𝜃𝑟,
see Fig. 2.7(a).

3. For inclined piles, it is also necessary that the angle 𝜃incl
𝜅 between the projections in the

plane 𝑥 − 𝑦 of the direction vectors of piles 𝑝𝜅 and ̄𝑝𝜅 and the angle 𝜃incl
𝑜 between the

ones of piles 𝑝𝑜 and ̄𝑝𝑜 coincide with the angle 𝜃𝑟, see Fig. 2.7(b).

If these conditions are satisfied, the influence sub-matrix corresponding to the pair {𝑝𝜅 , 𝑝𝑜}
can be obtained from the one of the equivalent reference pair { ̄𝑝𝜅 , ̄𝑝𝑜} as:

𝐆𝑝𝜅
𝑝𝑜 = 𝐑𝑇 𝐆 ̄𝑝𝜅

̄𝑝𝑜
𝐑 (2.53)

where the rotation matrix 𝐑 is a band matrix formed by the simple in-plane rotation matrix:

𝐑𝐳 =
⎡
⎢
⎢
⎣

cos 𝜃𝑟 sin 𝜃𝑟 0
− sin 𝜃𝑟 cos 𝜃𝑟 0

0 0 1

⎤
⎥
⎥
⎦

(2.54)

Fig. 2.8 illustrates the different equivalent collocation-observation pile pairs correspond-
ing to the case of a regular 3 × 3 pile group with identical vertical piles. Note that only six
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Figure 2.8: Example of equivalent collocation-observation pile pairs. 3 × 3 pile group with
vertical piles.

Group single 2 × 2 3 × 3 4 × 4 5 × 5 8 × 8 10 × 10 20 × 20
No. piles 1 4 9 16 25 64 100 400

No. possible 𝒑𝜿 , 𝒑𝒐 pairs 1 16 81 256 625 4096 10000 160000
No. equivalent 𝒑𝜿 , 𝒑𝒐 pairs 1 4 6 10 15 34 51 180

Table 2.1: Reduction in the number of collocation-integration pairs for the evaluation of the
influence matrix integrals through the reuse of equivalent sub-matrices. Regular groups with
vertical piles.

non-equivalent sets of 𝑝𝜅 , 𝑝𝑜 pairs exist within the 81 possible combinations of pile pairs in
the group. In order to give a better insight into the reduction in the number of times that
each different influence sub-matrix needs to be evaluated, Table 2.1 presents the number of
equivalent collocation-observation pile pairs with respect to all possible pair combinations
for regular square configurations of vertical piles. It can be easily found that the order of
pairs is reduced from 𝒪(𝑁2) to 𝒪(𝑁), being 𝑁 the number of piles of the configuration. In
Appendix B an example case about the savings in computational time that the proposed reuse
of influence sub-matrices is presented.

2.4 Seismic excitation
The seismic excitation can be modelled as travelling wavefronts propagating through the soil
that impose an incident field of displacements and stresses at each point of the half space

30 Integral model based on advanced fundamental solutions for the dynamic analysis of piles



INTEGRAL MODEL FOR THE ANALYSIS OF PILE FOUNDATIONS

.

2

domain. The presence of the pile foundation originates reflection and refraction phenomena
which produce an additional wave field that interacts with the original incident field. There-
fore, for the analysis of the seismic excitation, the total field is assumed to be obtained as the
sum of the incident field plus the scattered field [22, 66], as sketched by Fig. 2.9.

Figure 2.9: Decomposition of the total field into the incident and the scattered ones.

As mentioned before, the incident field is a displacement and stress field imposed by
a wave front generated by a far source. Analytical expressions of these displacements and
stresses can be obtained through the analysis of the wave propagation problems assuming
different wave types. In Appendix A, the formulation of the incident field corresponding to
body waves with a generic direction of propagation through the layered half space is obtained
through a TRM (Transmission-Reflection Matrix) methodology.

On the other hand, the scattered field arises from the presence of the piles in the soil.
The different stiffness of the piles makes them to oppose to the motion of the soil, creating an
additional field of displacements and stresses that propagates from the piles to the surrounding
media. Taking into account that the soil-pile interaction tractions can only be found in this
scattered field, the integral equation of the soil (2.44) should be interpreted in terms of the
variables of the scattered field.

𝐮𝜅
scattered = ∫Γ𝑝

𝐮∗𝐪𝑠
𝑝 dΓ𝑝 (2.55)

However, as the total displacement field is obtained from the superposition of the scattered
and incident fields (e.g., 𝐮𝜅 = 𝐮𝜅

scattered + 𝐮𝜅
𝐼 ), this equation can be easily rewritten in order to

introduce the total displacement field as:

𝐮𝜅 = ∫Γ𝑝
𝐮∗𝐪𝑠

𝑝 dΓ𝑝 + 𝐮𝜅
𝐼 (2.56)

where 𝐮𝜅
𝐼 is the vector containing the displacements along the three directions of the space of

the incident field evaluated at the collocation point 𝜅.
This equation can be rewritten in matrix form as:

𝐮𝜅 = 𝐆𝜅𝐪𝑠 + 𝐮𝜅
𝐼 (2.57)
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Finally, applying Eq. (2.57) to all pile nodes, the soil system of equations (2.48) including
the seismic excitation results in:

𝐮𝑠 = 𝐆𝐪𝑠 + 𝐮𝑠
𝐼 (2.58)

where 𝐮𝑠
𝐼 is the vector containing the displacements of the incident field evaluated at all of

the soil collocation points.

2.5 Excitation at the soil surface
The proposed model allows the assumption of additional loads acting over the free surface of
the soil. Different load types (such as point, line and surface loads) can be considered. These
forces could be used to represent different sources of excitation of the soil-pile system, such
as near machines, construction operations or even the passing of vehicles.

Let 𝐩𝑠 be the load vector acting over a part Γ𝑠 of the soil boundary Γ (free-surface). As
this load vector is not zero, the contour integral of the right-side of the reciprocity theorem
(2.37) does not longer vanishes, but is reduced to:

∫Γ
𝐩𝐮∗dΓ = ∫Γ𝑠

𝐩𝑠𝐮∗dΓ𝑠 (2.59)

Then, the integral soil equation (2.44) including the action of external loads at the free-
surface results in:

𝐮𝜅 = ∫Γ𝑝
𝐮∗𝐪𝑠

𝑝 dΓ𝑝 + ∫Γ𝑠
𝐩𝑠𝐮∗dΓ𝑠 (2.60)

In order to numerically evaluate the integral over the contour Γ𝑠, it is necessary to define
the elements that discretize the external load. Obviously, the case of a point load is completely
determined by setting the value of each one of its three components, but for the distributed
loads different element types can be selected. As a first approach in this work, classical two-
and four-noded elements are used to represent the line and surface loads, respectively. These
elements are depicted in Fig. 2.10 and are chosen due to their simplicity and versatility to
represent different configurations of loads by using a suitable amount of them. However,
different line or surface elements could be employed in order to rigorously represent more

Figure 2.10: Discretization of external forces acting over the free-surface. Point (left), line
(centre) and surface (right) loads. Only the vertical component is presented.
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complex load shapes corresponding to specific excitation types. For this reason, in the follow-
ing, the formulation is presented in general terms, without assuming any particular element
type for the load discretization.

Once the external load is discretized through the corresponding elements, the previous
integral equation, Eq. (2.60), can be written in matrix form as:

𝐮𝜅 = 𝐆𝜅𝐪𝑠 + 𝐆𝜅
𝐬 𝐩𝑠 (2.61)

where 𝐩𝑠 is the vector containing the nodal values that define the external load, and 𝐆𝜅
𝐬 is

the load influence sub-matrix corresponding to the collocation point 𝜅 that is obtained by
integrating the displacement fundamental solution times the proper shape functions.

If a point load is considered, the influence sub-matrix 𝐆𝜅
𝐬 is directly obtained as the tensor

containing the displacement fundamental solution evaluated at the point where the external
force is applied:

𝐆𝜅
𝐬 = 𝐮∗ (2.62)

On the other hand, when a distributed load is assumed, its influence sub-matrix 𝐆𝜅
𝐬 is

obtained through the assembly of the elemental ones 𝐆𝜅
𝐬 𝑒. Considering that inside each el-

ement Γ𝑠𝑒 the external load is determined by its nodal values and general shape functions
𝚽 = {Φ1, ...Φ𝑚}, the elemental sub-matrix is defined as:

𝐆𝜅
𝐬 𝑒 =

[∫Γ𝑠𝑒

𝐮∗Φ1 dΓ𝑠𝑒 ... ∫Γ𝑠𝑒

𝐮∗Φ𝑚 dΓ𝑠𝑒]
(2.63)

where Γ𝑠𝑒 can represent either a line or surface element depending on the load type.
Finally, applying Eq. (2.61) to all pile nodes, the soil system of equations (2.48) with the

inclusion of the superficial external loads results in:

𝐮𝑠 = 𝐆𝐪𝑠 + 𝐆𝐬𝐩𝑠 (2.64)

2.6 Pile-soil coupling
In the previous sections, the systems of equations corresponding to the piles and the soil have
been introduced independently from each other. However, in order to solve them and obtain
the response of the soil-foundation system, a unique system of linear equation is required.
This system of equations is obtained by imposing compatibility and equilibrium conditions
in the soil-pile variables.

As welded soil-pile contact conditions are assumed, the compatibility conditions imply
that the displacements at the points of the soil corresponding to the load lines 𝐮𝑠 are equal to
the translations contained in the beam kinematic degrees of freedom 𝐮. On the other hand, the
equilibrium conditions at the soil-pile interface impose that the interaction tractions acting
over the soil are equal, but with opposite sign, to the ones acting over the piles, i.e. 𝐪𝑠 = −𝐪𝑝.
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𝐪𝑠 𝐮 𝐅head 𝐔𝑐

Soil Equations
(2.48) / (2.58) / (2.64)

Pile FE Equations
(2.25)

Cap Equilibrium
(2.35)

Cap Restrictions
(2.33)

Figure 2.11: Structure of the coefficient matrix 𝒜 .

With these considerations, Eqs. (2.25), (2.33), (2.35), (2.48), (2.58), and (2.64) can be
grouped together into a system of linear equations which, in the general scenario, has the
form:

𝒜 {𝐮, 𝐪𝑝, 𝐅head, 𝐅tip, 𝐔𝑐}T = ℬ (2.65)

where 𝒜 is the square matrix of coefficients obtained from the application of the afore-
mentioned equations that presents the form depicted in Fig. 2.11, and ℬ is the right-hand
side vector of known coefficients that contains the boundary conditions at the pile head or tip,
the external forces acting over the foundation, as well as, the terms associated to the seismic
excitation and loads acting over the soil surface. It is important to remark that the obtained
system is written exclusively in terms of pile (and cap) variables.

2.7 Displacements at internal points of the soil
Once the model system of equations (2.65) is solved, the displacements at any point of the soil
domain can be computed in a post-processing stage through the application of Eqs. (2.46),
(2.57), or (2.59) (depending on the system excitation).

Assuming the case in which both a seismic excitation and an external action over the soil
surface coexist, the equation that allows the computation of the displacement vector 𝐮𝑖 at an
internal point 𝑖 belonging to the soil domain is:

𝐮𝑖 = −𝐆𝑖𝐪𝑝 + 𝐆𝑖
𝐬𝐩𝑠 + 𝐮𝑖

𝐼 (2.66)
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2.8 Influence of the omitted tangential tractions
Models that take into account the actual geometry of the piles, such as BE models, can capture
all interaction phenomena (i.e. interaction tractions) between the soil and the piles. On the
other side, the proposed model (or the previous BE-FE model) is not able to completely
capture these interaction effects. As piles are reduced to load lines, only the resultant of the
tractions around the pile cross-section is considered by the simplified models, but not the
effects that arise due to a local variation of these tractions.

In order to analyse the importance of the omitted tractions, different boundary conditions
between the soil and the pile can be directly employed in BE models. By assuming smooth
contact conditions, instead of welded contact conditions, the effects of the tangential tractions
of the soil-pile interface vanish. However, this approach does not allow to identify the differ-
ent components that contribute to the problem. To overcome this limitation, a Winkler model
that explicitly incorporate each component involved in the problem is used. The formulation
of this Winkler model is detailed in Appendix C.

For example, for seismic excitations, the spatial variability of the incident field gener-
ates tangential tractions around the soil-pile interface that produce the effect of a distributed
moment over the pile shaft (see Appendix C). This kind of excitation, as deduced from the
formulation presented in this chapter, cannot be captured by the proposed model.

The objective of this section is to determine which response variables are affected by the
simplification of the soil-pile interaction made in the proposed model. In previous works
(see, e.g. [23,28]) it has been verified that the simplified BE-FE model accurately reproduces
the global response of the foundation (impedance functions, kinematic interaction factors...)
that is obtained by a rigorous BE model. Thus, this section is aimed at studying the influence
of the pile simplification upon more local response variables, specifically the pile kinematic
bending moments and shear forces.

For this purpose, the problem of a single pile embedded in a homogeneous half space
and subjected to vertically-incident shear waves is considered. The rotation of the pile head
is assumed to be restrained. The pile dimensions and material properties are: diameter 𝑑 =
0.6 m, length 𝐿 = 12 m, Young’s modulus 𝐸𝑝 = 30 GPa, density 𝜌𝑝 = 2500 kg/m3 and
Poisson’s ratio 𝜈𝑝 = 0.25. The pile cross-section is assumed to be solid and no material
damping is considered for the pile. On the other hand, several soil domains are studied with
the following material properties: shear wave propagation velocity 𝑐𝑠 = 110, 250, and 350
m/s (corresponding to pile-soil Young’s modulus ratio 𝐸𝑝/𝐸𝑠 = 50, 100 and 500), soil density
𝜌𝑠 = 1750 kg/m3, soil Poisson’s ratio 𝜈𝑠 = 0.4 and soil hysteretic damping ratio 𝛽𝑠 = 5%.
The pile response is presented in terms of envelopes of maximum shear forces and bending
moments which are obtained by computing the time response through the standard frequency-
domain method [67]. For this purpose, one synthetic accelerogram compatible with the Type
2 response spectrum for Ground Type C [68] with a maximum acceleration equal to 0.375 g
is used as excitation input.

Fig. 2.12 presents the envelopes of maximum shear forces (top row) and bending mo-
ments (bottom row) obtained for the three different pile-soil stiffness ratios. The results cor-
responding to the BE model (B1 and B3) are plotted with solid lines, the ones obtained by

Instituto Universitario SIANI 35



2
.

INTEGRAL MODEL FOR THE ANALYSIS OF PILE FOUNDATIONS

Model Description
B1 BE model. Smooth contact condition on the pile shaft. Free pile tip.
B3 BE model. Welded contact condition on the pile shaft and tip.
W1 Winkler model. Horizontal soil stiffness. Free pile tip.
W2 Winkler model. Horizontal and rocking soil stiffness. Free pile tip.
W3 Winkler model. Horizontal and rocking soil stiffness. 𝑚𝐼 included. Loaded pile tip.

Table 2.2: Description of the BE and Winkler model variations used in this study.

the Winkler model (W1, W2 and W3) are shown with dashed lines, and the results of the
proposed integral model are represented by red crosses. The descriptions of the different
variations of the BE and Winkler models are listed in Table 2.2.

Attending to the results in terms of the envelopes of bending moments, it is found that the
influence of the tangential tractions in this variable is limited. Virtually the same results are
obtained for the different models, including the proposed integral one. Only some differences
are seen close to the pile tip, especially for the stiff soils. For these cases, the results of the
integral model are closer to the ones obtained by the BE model with smooth contact condition
(B1), i.e. the one that does not include the tangential tractions.

On the other hand, a great influence of the tangential tractions on the pile maximum shear
forces is found. Larger forces are obtained for the BE model that includes these tractions (B3)
with respect to the one with smooth contact conditions (B1). Regarding the Winkler models, it
is found that the model that does not takes into account the effects of the tangential tractions
(W1) produces very similar shear forces that the corresponding BE model. On the other
hand, in order to match the results of the continuous model with welded contact conditions,
the Winkler model must incorporate both the effects of the tangential tractions produced by
the soil as reaction to the pile rotation as well as the ones produced by the action of the
incident field (W3). If only the contribution of the tractions arising due to the pile rotation
are considered (W2) the maximum shear forces are significantly reduced with respect to the
reference ones (BE model). As expected, the envelopes of maximum shear forces obtained
by the integral model coincide with the ones of the formulations that do not incorporate the
effects of any tangential tractions, matching almost perfectly the results obtained by the BE
model.

The main conclusion extracted from this study is that the simplification of the soil-pile
interaction assumed by the proposed model is only relevant to the analysis of the pile shear
forces. The developed model accurately reproduces the response of the foundation in terms of
bending moments and global foundation variables. Despite the comparisons made in this sec-
tion and in the cited BE-FE works, additional verification results, adapted to each particular
problem, are briefly presented at the beginning of the following chapters.
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Figure 2.12: Influence of the tangential tractions on the envelopes of maximum shear forces
and bending moments for a single pile under seismic excitation. Results obtained through
different models and contact conditions.

Instituto Universitario SIANI 37





3. Impedance
functions for
inclined piles in
non-homogeneous
soils

3.1 Introduction
3.2 Verification results
3.3 Problem definition
3.4 Impedance functions
3.5 Conclusions





IMPEDANCE FUNCTIONS FOR INCLINED PILES

.

3

3.1 Introduction
In situations where loads with great horizontal components are present inclined piles are
used in combination with vertical piles to increase the foundation lateral stiffness. For the
last decades, the use of inclined piles in seismic events have been strongly discouraged by
several codes [68,69] due to the bad performance observed in various earthquakes during the
90’s. Nevertheless, in the last years the use of inclined piles has increased again and some
studies have revealed that they might have a beneficial effect not only for the foundation, but
for the superstructure too [70–73]. However, further study is needed in order to achieve a
better understanding of the dynamic behaviour of raked pile foundations.

Despite the fact that seismic response of inclined piles has been the object of analysis for
different studies [28, 72–76], the impedance problem of this type of pile foundation has re-
ceived little attention. Impedance functions for specific configurations of inclined pile groups
were studied by Mamoon et al. [77] for a 3 × 3 pile group with a rake angle of 𝜃 = 15𝑜.
Padrón et al. presented a complete set of impedance functions for configurations of single
piles and pile groups embedded in a homogeneous half space [23] and in a soil layer resting
on a bedrock [25]. A strong dependence on the configuration and rake angle was found for the
group impedances, specially in the rocking and cross horizontal-rocking ones. Model tests
on a single battered pile [78] and a 2 × 2 group [79] in dry cohesionless soil were carried out
by Goit and Saitoh. In the first study, a comparison with a FEM numerical model was made,
while in the latter the effects of soil non-linearity were analysed. Carbonari et al. [80] pro-
posed an analytical Winkler-type model for the analysis of impedance functions of inclined
piles. Dezi et al. [81] introduced a numerical model for the analysis of pile foundations in lay-
ered soil deposits and presented impedance functions for 2×2 inclined pile groups embedded
in a homogeneous soil deposit and in a two-layered soil deposit over a rigid bedrock.

In the aforementioned papers only homogeneous half spaces or up to two-layered soil
deposits were considered. However, real soils can present properties that vary with depth
and the assumption of soil homogeneity can lead to misleading predictions of the foundation
behaviour in the actual profile. Up to the author’s knowledge, only Giannakou et al. [82] have
presented dynamic impedances for a single inclined pile in a soil profile whose properties
vary continuously with depth.

For vertical pile foundations in non-homogeneous soils, the impedance problem has been
studied by several authors with different methodologies. Velez et al. [83] employed a FEM
formulation to obtain the lateral impedance of a single end-bearing pile in a non-homogeneous
soil deposit overlaying a rigid bedrock. The results for the non-homogeneous media were
compared against the ones corresponding to an ‘statically equivalent’ homogeneous deposit,
showing that the static equivalence does not guarantee identical pile response under dynamic
loads. Kaynia and Kausel [84], followed by Miura et al. [85], used a three-dimensional for-
mulation based on Green’s functions of cylindrical loads in layered semi-infinite media and
presented a wide set of results for single piles and pile groups embedded in different soil pro-
files. Their results revealed that the horizontal impedance is more affected by near-surface
soil properties than the vertical one, and that the interaction effects between the group piles
are more pronounced in the non-homogeneous medium. Mylonakis and Gazetas [86,87] pre-
sented a Winkler model to solve this problem. For pile groups, the pile-soil-pile effects were
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considered through interaction factors [88, 89] which relate the response of a ‘receiver’ pile
to the oscillation of a near (‘source’) pile. The behaviour of the non-homogeneous media was
represented by a transfer-matrix formulation [90, 91]. The same methodology has been used
by other authors to handle the impedance problem in non-homogeneous media [92–94]. In
their recent work, Rovithis et al. [94] studied the lateral impedance of a single pile in a soil pro-
file with properties varying according to a power law. Their results showed that lateral damp-
ing is overestimated when using the homogeneous assumption, leading to an un-conservative
evaluation of the lateral pile deflections at high frequencies. This conclusion agrees with the
results obtained by Giannakou et al. [82] for a lineal-varying non-homogeneous soil with a
FEM model.

In this chapter, impedance functions for single inclined piles and small pile groups with
inclined elements embedded in soils whose properties vary with depth are obtained. The
intention of the work presented in this chapter is to take advantage of the capabilities of the
developed model to analyse the influence that the variability of the soil profile has on the
stiffness of the foundation. First, the use of the proposed formulation to tackle the impedance
problem is verified in Section 3.2. Then, the foundation geometry and soil profiles are defined
in Section 3.3. Finally, the impedance functions for several configurations are presented in
Section 3.4, followed by the main conclusion that are drawn from them in Section 3.5.

3.2 Verification results
The impedance functions (𝐾𝑖𝑗) are defined as the ratios between the steady-state force (or
moment) applied at the pile cap and the resulting displacement (or rotation). In order to
compute them, a unitary harmonic displacement (or rotation) is imposed to the group cap
so the dynamic stiffness can be calculated by applying equilibrium with the forces at the
pile heads. The impedance function is generally expressed through two frequency dependent
coefficients representing the stiffness (𝑘𝑖𝑗) and damping (𝑐𝑖𝑗) components:

𝐾𝑖𝑗 = 𝑘𝑖𝑗 + 𝑐𝑖𝑗𝑎𝑜i (3.1)

where 𝑎𝑜 is the dimensionless frequency corresponding to each particular case.
In this section, the ability of the proposed formulation to address the impedance problem

is verified. First, results for configurations of vertical piles in non-homogeneous media are
reproduced in order to verify the capability of the integral model to tackle a varying soil
profile. Then, the implementation of the pile inclination is tested by comparing with previous
impedance results for a foundation with battered elements.

Vertical piles in non-homogeneous media

In order to verify the ability of the presented formulation to address the impedance prob-
lem in non-homogeneous media, the results obtained for vertical elements by Miura et al. [85]
of the horizontal, rocking and vertical impedances of a single vertical pile and 2 × 2 and 4 × 4
vertical pile groups in different soil types are reproduced.
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Figure 3.1: Horizontal, rocking and vertical impedances of a vertical 2 × 2 pile group. Com-
parison with the solution presented by Miura et al. [85].

The parameters that define the properties of the soil and piles are: Young’s modulus ratio
𝐸𝑝/𝐸𝐿

𝑠 = 100, density ratio 𝜌𝑠/𝜌𝑝 = 0.7, Poisson’s coefficient 𝜈𝑠 = 0.4 for the soil and
𝜈𝑝 = 0.25 for the piles and soil damping coefficient 𝛽 = 0.05. The pile group geometry
is defined by: piles aspect ratio 𝐿/𝑑 = 20 and distance ratio between adjacent pile centres
𝑠/𝑑 = 5. Three soil types are used (G1, G2 and G3 following the notation used by Miura et
al.): two non-homogeneous soils with a linear variation of the Young’s modulus value along
the pile length (following the notation presented in Section 3.3: 𝑛 = 0.5 with a value of
𝑏 = 0.1 for G1 and 𝑏 = 0.4 for G2) and a homogeneous soil (G3). All soil types keep the
Young’s modulus value constant and equal to 𝐸𝐿

𝑠 below the pile tip.
For simplicity’s sake, only the comparison corresponding to the 2 × 2 group is shown in

Fig. 3.1, where the stiffness and damping coefficients are presented against the dimensionless
frequency 𝑎𝑜 = 𝜔 𝑑/𝑐𝐿

𝑠 . For the vertical and horizontal impedance problems, the coefficients
are normalized by the pile static stiffness value 𝑘𝑖𝑗0 times the number of piles. A different
case is the one regarding the rocking impedances, where the contribution of the vertical static
stiffness times the square of the distance to the rotation axis 𝑥𝑖 is also included for this purpose.
Note that this normalization is used only in this section in order to reproduce the results of
Miura et al. A good agreement between the two methods can be seen for all soil types.
The largest differences take place for the soil type G1 (the one with the highest properties
variation), particularly for horizontal impedances.

The problems under study consider non-homogeneous soils whose properties vary con-
tinuously with depth; while the Green’s functions used by the integral model assume a fi-
nite number of zoned-homogeneous horizontal layers. Thus, the number of layers needed to
model the continuously-varying soil must be assessed. Fig. 3.1 also presents the horizontal
impedance functions obtained for different number of layers (𝑛𝑙 = 4, 10, 40 and 150), show-
ing that, once a certain number of layer is reached, increasing the soil subdivision does not
have any perceptible effect on the obtained results. The number of layers needed to achieve
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Figure 3.2: Horizontal, rocking and vertical impedances of 2 × 2 pile group with piles in-
clined in the direction of the horizontal excitation. Comparison with the solution presented
by Medina et al. [30].

convergence depends on soil type, frequency range and problem type. In general, captur-
ing adequately the impedance functions that involve horizontal components (i.e. horizontal,
torsional and horizontal-rocking coupling ones) requires a larger number of layers: e.g. 30
layers were needed for the accurate computation of these impedances versus the 10 layers
needed for the vertical and rocking problems.

Inclined piles in homogeneous media

On the other hand, in order to verify the implementation in case of the inclined piles,
the impedance functions of a 2 × 2 pile group with inclined members presented by Medina
et al. [30] are reproduced in Fig. 3.2, where the real and imaginary parts of the normal-
ized impedances functions are plotted against the dimensionless frequency 𝑎𝑜 = 𝜔𝑑/𝑐𝑠. The
curves correspond to a foundation with 𝐿/𝑑 = 15 and 𝑠/𝑑 = 7.5 with the piles inclined 𝜃
degrees with respect to the vertical axis in the direction of the horizontal excitation. Pile-
soil Young’s modulus 𝐸𝑝/𝐸𝑠 = 1000 and density 𝜌𝑠/𝜌𝑝 = 0.7 ratios, soil 𝜈𝑠 = 0.4 and pile
𝜈𝑝 = 0.25 Poisson’s ratios and soil hysteretic damping coefficient 𝛽 = 0.05 are assumed.
The results obtained by the proposed formulation agree very well with the ones obtained by
Medina et al. using the previous BE-FE model.

3.3 Problem definition
The problem studied in this chapter is sketched in Fig. 3.3. The foundations consist of one or
more piles of equal length 𝐿, diameter 𝑑 and material properties. In the group configurations,
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the space between two adjacent pile centres at cap level is defined by 𝑠. The rake angle 𝜃
measures the angle between the pile axis and the vertical.

Figure 3.3: Sketch of the impedance problem.

The configurations studied correspond to the following properties: hysteretic damping
coefficients 𝛽𝑠 = 0.05 for soil and 𝛽𝑝 = 0 for piles; Poisson’s ratios 𝜈𝑠 = 0.4 for soil and
𝜈𝑝 = 0.25 for piles; soil-pile density ratio 𝜌𝑠/𝜌𝑝 = 0.7 and pile aspect ratio 𝐿/𝑑 = 15. Two
values of pile-soil modulus ratio 𝐸𝑝/𝐸𝐿

𝑠 = 103 and 102 are studied in order to represent soft
and stiff soils.

Results for the rake angles 𝜃 = 0𝑜, 10𝑜, 20𝑜 and 30𝑜 are presented. The pile orientation
can be parallel or perpendicular to the direction of excitation or along the cap diagonal (as
indicated in each figure). For pile groups, separations between piles of 𝑠/𝑑 = 5 and 10 are
considered.

Soil profiles

The soil profile is modelled as a viscoelastic unbounded region with constant density 𝜌𝑠,
constant Poisson’s ratio 𝜈𝑠, constant hysteretic damping coefficient 𝛽𝑠 and a varying shear
wave velocity that increases continuously with depth along the pile length following the gen-
eralized power law function [95]:

𝑐𝑠(𝑧) = 𝑐𝑟
𝑠 (𝑏 + 𝑞 𝑧

𝑧𝑟 )
𝑛

(3.2)

where 𝑏, 𝑞, 𝑛 are dimensionless parameters that determine the soil non-homogeneity and 𝑧𝑟, 𝑐𝑟
𝑠

are the depth and shear wave velocity at the reference point. In the present study, the reference
point is located at the pile tip (𝑧𝑟 = 𝐿) as assumed by several authors when treating non-
homogeneity (e.g., [84,85,94]). However, some other researchers (e.g., [82,83]) consider the
reference point at a depth equal to the pile diameter (𝑧𝑟 = 𝑑). These assumptions are equally
valid but have to be carefully considered when comparing results.
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Following Rovithis et al. [95], the general expression (3.2) can be rewritten in order to
include the shear wave velocity at the surface (𝑐0

𝑠 ) as:

𝑐𝑠(𝑧) = 𝑐𝐿
𝑠 [𝑏 + (1 − 𝑏) 𝑧

𝐿]
𝑛

with 𝑏 =
(

𝑐0
𝑠

𝑐𝐿
𝑠 )

1/𝑛

(3.3)

Using this expression, the soil profile depends upon two parameters: the ratio between the
shear wave velocity at the surface and at the pile tip (𝑐0

𝑠 /𝑐𝐿
𝑠 ) and the non-homogeneity factor

𝑛. This factor is usually considered between 0 and 1, resulting in a homogeneous media when
𝑛 → 0 and in a linear variation of the shear velocity when 𝑛 → 1.

The shear wave velocity is kept constant for depths below the pile tip. As the soil density
and Poisson’s ratio are kept constant for the whole half space, the profile can be also expressed
in terms of the soil Young’s modulus as:

𝐸𝑠(𝑧) =
{

𝐸𝐿
𝑠 [𝑏 + (1 − 𝑏) 𝑧

𝐿]
2𝑛 if 0 ≤ 𝑧 ≤ 𝐿

𝐸𝐿
𝑠 if 𝑧 > 𝐿

(3.4)

where 𝐸𝐿
𝑠 corresponds to the soil Young’s modulus at the reference point (i.e. the pile tip).

Note that for a non-homogeneity factor 𝑛 = 0.5, a linear variation with depth of the soil
Young’s modulus is obtained (Gibson soil).

In order to study a wide set of non-homogeneous media, four values of the ratio between
shear wave velocity at surface and pile tip (𝑐0

𝑠 /𝑐𝐿
𝑠 = 0.7, 0.5, 0.25 and 0.1) are combined with

three values of the non-homogeneity factor (𝑛 = 0.3, 0.5 and 0.9) resulting in 12 different soil
profiles. In addition, impedances for the homogeneous soil are also computed so they can be
used as reference values.

As the number of soil profiles is relatively large, and some of them yield similar results,
four representative soils are chosen after having computed and compared all impedance func-
tions. For this purpose, soil profiles that present similar impedance curves are grouped to-
gether, and the representative profile is selected as the closest to the group mean value. For
this clustering process all of the pile configurations introduced before are considered. Fig.
3.4 shows the final soil clusters and their respective representative profiles (black solid lines).
The variation of the shear wave velocity along the pile length is presented. The soil groups
are arranged from left to right in ascending order of non-homogeneity.
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Figure 3.4: Soil profiles in terms of shear wave velocity. Each subplot presents all profiles
yielding very similar impedance functions for the considered pile configurations. The profile
chosen as representative in each case is shown in black solid line.

3.4 Impedance functions
In the following, normalized horizontal 𝐾ℎℎ/ ̄𝐸𝑠𝑑, rocking 𝐾𝑟𝑟/ ̄𝐸𝑠𝑑3, vertical 𝐾𝑣𝑣/ ̄𝐸𝑠𝑑, tor-
sional 𝐾𝑡𝑡/ ̄𝐸𝑠𝑑3 and horizontal-rocking coupling 𝐾ℎ𝑟/ ̄𝐸𝑠𝑑2 impedance functions are pre-
sented as functions of the dimensionless frequency ̄𝑎𝑜 = 𝜔𝑑/ ̄𝑐𝑠. The mean shear wave velocity
along the pile length ̄𝑐𝑠 is used in order to handle the depth-varying profiles:

̄𝑐𝑠 = 1
𝐿 ∫

𝐿

0
𝑐𝑠(𝑧) d𝑧 (3.5)

In coherence with the normalization of the frequency, the mean value of the soil Young’s
modulus along the pile length ̄𝐸𝑠 is used to obtain a dimensionless expression of the impedance
functions:

̄𝐸𝑠 = 1
𝐿 ∫

𝐿

0
𝐸𝑠(𝑧) d𝑧 (3.6)

In order to clarify the analysis, only a few of the obtained results are displayed along this
chapter. Thus, from the configurations defined in Section 3.3, only impedance functions for
single inclined piles and 3 × 3 inclined pile groups oriented both parallel and perpendicular
to the horizontal component with a separation distance of 𝑠/𝑑 = 5 are presented for the repre-
sentative soil profiles defined before. The 3×3 group is selected as its results clearly illustrate
the effects of the soil non-homogeneity on the dynamic impedances of the pile groups. On
the other hand, the case with inclination along the cap diagonal is omitted as its results can
be extrapolated from the results corresponding to the two configurations shown.

3.4.1 Inclined single pile impedance functions
Fig. 3.5 presents the impedance functions for a single pile inclined in the direction of the
horizontal excitation. Note that for the rocking and horizontal-rocking cross impedances only
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the curves corresponding to vertical piles are presented as they are virtually insensitive to the
rake angle.

The definition of the dimensionless frequency in terms of the mean shear wave velocity
causes that the curves of the different soil profiles present similar evolutions with frequency,
only scaling its value depending on the profile. For the horizontal impedance term, lower
stiffness values are found as the soil non-homogeneity (as defined above) increases. The
opposite effect is seen for the vertical, rocking and coupled terms, for which the normalized
stiffness is higher for the non-homogeneous profiles.

The damping coefficients, on the other hand, present slightly smaller values as the soil
non-homogeneity increases. This imply that, for non-homogeneous soils, the damping term is
lower than the one corresponding to the homogeneous assumption, agreeing with the findings
of previous works [82, 94]. This effect is manifested for all the angles of inclination. The
only exception is found for the rocking and cross horizontal-rocking impedance functions, for
which the damping component strongly increases depending on the soil non-homogeneity in
the same sense as the stiffness term.

Regarding the effects of the rake angle: the horizontal impedance increases as the pile in-
clination augments due to the participation of the pile axial stiffness. This also explains why
the vertical impedance decreases as the rake angle augments. This coupling between the hor-
izontal and vertical components produces a horizontal-vertical cross impedance term arising
for inclined piles. Contrary to what is found for the rest of impedance terms, the evolution
with the frequency of the stiffness component of the vertical and horizontal-vertical cross
impedances follows different trends depending on the soil stiffness: for soft soils (𝐸𝑝/𝐸𝐿

𝑠 =
1000), a reduction of the stiffness is seen as the frequency increases; while for stiff soils
(𝐸𝑝/𝐸𝐿

𝑠 = 100), those stiffness terms augment continuously with this parameter.

3.4.2 Inclined 3 × 3 pile group impedance functions
Figs. 3.6 to 3.10 show the normalized impedance functions for the 3×3 pile groups with
inclined elements for the studied soil profile sets. In general, the effects of the soil profile
are the same for all of the group impedance functions: an average reduction in the stiffness
and damping components and an increase in their dependence on the frequency as the soil
non-homogeneity increases. These trends are the same for the curves corresponding to stiff
(dashed lines) and soft soil configurations (solid lines).

The peaks on the impedances curves, produced due to resonance in the interaction be-
tween near piles, take place at smaller frequencies as the soil non-homogeneity increases.
This effect make sense considering that if the wave velocity is reduced in the upper layers,
the frequency at which resonance takes place should be reduced too. This effect is magnified
with the increase in the rake angle as the distance between piles augments and, consequently,
the frequency must be further reduced. Related to this effect, sharper peaks in the damping
component at these frequencies can be seen as the non-homogeneity increases. This be-
haviour produces large differences at high frequencies between the damping component of
the homogeneous media and the ones corresponding to the non-homogeneous profiles, even
when a mean shear velocity is used for the definition of the dimensionless frequency.
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Figure 3.5: Impedance functions for a single inclined pile in different non-homogeneous
media
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Figure 3.6: Horizontal impedance functions for a 3 × 3 group in different non-homogeneous
media

0

500

1000

1500

2000

2500

k
tt
 /

 E _

sd
3

θ=0
o

homogeneous

c  s
  0 /c  s

  L =0.7, n=0.5

c  s
  0 /c  s

  L =0.5, n=0.5

c  s
  0 /c  s

  L =0.25, n=0.9

θ=10
o

E  p /E  s
  L =1000

E  p /E  s
  L =100  

θ=20
o θ=30

o

0

1000

2000

3000

4000

0 0.2 0.4 0.6 0.8 1

c t
t 
/ 

E _

sd
3

a
 _

o

0 0.2 0.4 0.6 0.8 1
a
 _

o

0 0.2 0.4 0.6 0.8 1
a
 _

o

0 0.2 0.4 0.6 0.8 1
a
 _

o

Figure 3.7: Torsional impedance functions for a 3 × 3 group in different non-homogeneous
media
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Figure 3.8: Vertical impedance functions for a 3 × 3 group in different non-homogeneous
media
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Figure 3.9: Rocking impedance functions for a 3 × 3 group in different non-homogeneous
media
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Figure 3.10: Horizontal-rocking coupling impedance functions for a 3 × 3 group in different
non-homogeneous media

However, the magnitude of the shift in the frequency at which those peaks appear is much
larger for horizontal (Fig. 3.6) impedances than for the vertical (Fig. 3.8) modes, for which
the peaks take place almost at the same dimensionless frequency regardless of the soil profile.
Following [85], this can be explained assuming that the horizontal impedance is more affected
by the superficial properties than the vertical one, which present a higher contribution of
deeper soil properties.

Similar behaviour, in terms of frequencies at which the peaks are produced and the effects
of the soil non-homogeneity, is seen between the vertical (Fig. 3.8) and rocking (Fig. 3.9)
curves owing to the contribution of the former in the latter. This also happens between the
horizontal (Fig. 3.6) and torsional (Fig. 3.7) impedance functions. In all of the mentioned
curves, as the rake angle and the soil non-homogeneity increase, the interaction between
distant piles becomes more important producing that new peaks arise.

Attending to the horizontal impedance curves (Fig. 3.6), different effects are seen de-
pending on the direction of the pile inclination. When the piles are inclined perpendicular
to the horizontal excitation, the stiffness and damping components slightly decrease with re-
spect to the vertical pile configuration. On the other hand, if the piles are inclined parallel to
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the excitation, an increment in the impedance functions is found as the rake angle augments.
Furthermore, the inclination of the piles parallel to the horizontal excitation intensifies the
differences in the curve shapes between the studied profiles. Thus, the variability in the
damping functions is highest for 𝜃 = 30𝑜. Contrary to what happened for the single pile
impedances, the soil profiles with depth-varying properties produce similar or even higher
values of the maximum damping coefficient; while their stiffness component is significantly
lower when compared to the homogeneous profile. Thus, for pile groups, the homogeneous
assumption does not imply higher damping-stiffness ratios. This effect can also be seen for the
torsional impedance functions, but not for the rest of terms. Noteworthy is the fact that these
conclusions are obtained based on the normalization used: if the values of ̄𝐸𝑠 and ̄𝑐𝑠 used
to normalize the frequency and the impedance components change, the stiffness component
will vary in a greater extent than the damping one due to its definition (Eq. 3.1).

Fig. 3.8 shows that, with the normalization employed, the vertical impedance functions
for the homogeneous and 𝑛 = 0.5 soil profiles are very close to each other, although their max-
ima do not appear at exactly the same dimensionless frequency. Both stiffness and damping
functions for the most non-homogeneous profile (𝑛 = 0.9) converge to the results for the rest
of profiles only for large rake angles (𝜃 ≥ 20𝑜).

Owing to the great contribution of the vertical component to the rocking impedance func-
tions, the effects of the normalization on the similarity of the curves described in the previous
paragraph can also be seen in Fig. 3.9. However, these effects are manifested in a lower extent
than for the vertical impedance curves. The rocking impedance curves strongly depend on
the soil profile, presenting more peaks as the soil non-homogeneity increases. This influence
of the soil profile is stronger for piles with lower angles of inclination. Contrary to what was
found for the horizontal impedance functions, an increase in the rake angle always produces
a reduction in the rocking impedance value regardless of the direction of inclination. How-
ever, different curves are obtained depending on whether the piles are inclined parallel or
perpendicular to the horizontal motion direction.

Regarding the cross horizontal-rocking component (Fig. 3.10), again different situations
are seen depending on the direction of pile inclination. If the piles are inclined perpendicular
to the excitation (bottom figures), the rake angle has virtually no influence on this impedance
component. On the contrary, if the pile inclination is parallel to the excitation direction (top
figures), the magnitude of the impedance values and its sign change as the angle increases,
going from positive values for vertical piles to negative ones for higher inclination angles.
This effect is produced for all the studied profiles.

3.5 Conclusions
In this chapter, the proposed integral model is used for the analysis of the impedance functions
for foundations with inclined piles in non-homogeneous media. For studying the influence
of the soil profile on the foundation response, configurations of single piles and 2 × 2 and
3 × 3 pile groups with inclined elements embedded in different soil profiles whose shear
wave velocity varies along the pile length following a generalized power law are considered.
Attending to the computed results, three soils profiles are selected as representative of the
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twelve studied media and their corresponding impedance functions are compared with the
ones of the homogeneous soil. From the analysis of these results the following conclusions
are drawn:

• The impedance functions are found to strongly depend on the soil profile, which high-
lights the importance of estimating the ground real profile and the need of using it to
accurately analyse the dynamic response of the foundation.

• Evidently, the magnitude of the stiffness functions tends to decrease when the mean
shear wave velocity of the soil profile decreases, with the exception of the vertical mode,
for which normalized impedance functions are largely independent of the soil profile,
in the cases studied herein.

• The damping functions present, in general, the same behaviour than the stiffness func-
tions.

• The magnitude of the stiffness function peaks and the frequencies at which they ap-
pear, decrease significantly when the non-homogeneity of the soil increases, with the
exception, again, of the vertical mode.

• The magnitude of the differences among the results corresponding to the different pro-
files diminishes for large pile rake angles.

• The equivalent homogeneous assumption can lead to impedance values that are signif-
icantly away from the ones that correspond to the actual soil profile depending on the
frequency range of interest.

54 Integral model based on advanced fundamental solutions for the dynamic analysis of piles



4. Seismic response
of pile foundations.
Variations due to
the soil profile

4.1 Introduction
4.2 Verification results
4.3 Problem definition
4.4 Foundation kinematic inter-

action factors
4.5 Structural maximum accel-

erations
4.6 Influence of the pile head

condition on the foundation
seismic input factors

4.7 Pile kinematic bending mo-
ments

4.8 Conclusions





SEISMIC RESPONSE OF PILE FOUNDATIONS

.

4

4.1 Introduction
The seismic response of pile foundations is a demanding object of study within the soil-
structure interaction field. Depending on the focus of the study, the seismic response of the
foundation can be measured in terms of: 1. the kinematic interaction factors of the foundation,
or 2. the kinematic internal forces of the piles.

Regarding the study of kinematic interaction factors, numerous research works have tack-
led this problem during the last decades [96–100]. These factors represent how the foundation
filters the seismic motion of the soil and are generally used as part of substructuring method-
ologies (see e.g. [26]) in order to study the structural response.

Different studies have analysed the influence of different variables on the kinematic inter-
action factors of pile foundations. Mamoon and co-workers [101, 102], followed by Kaynia
and Novak [103] and Makris and Badoni [104], highlighted the importance of the wave type
and its direction of propagation when computing the foundation seismic motion. More re-
cent works [28, 74] presented kinematic interaction factors for configurations with battered
elements, showing the influence of the pile rake angle on the foundation response.

However, the effects of the variability of the soil profile on the kinematic interaction fac-
tors of pile foundations demand more study, specially for the case of pile group configura-
tions. Up to the author’s knowledge, only in the work of Rovithis et al. [94], the interaction
factors for a single pile embedded in different soils with depth-varying properties were thor-
oughly analysed based on a Beam-on-dynamic-Winkler approach. Previous to his work, a
brief overview of the higher filtering effects of non-homogeneous soils was also presented
by Kaynia and Kausel [84] for the particular cases of a single pile and a 3×3 pile group in a
linearly-variable profile.

Regarding the pile seismic internal forces and based on field evidences and experimental
tests [105–108], it has been concluded that those kinematic forces can be as significant as the
ones produced by the vibration of the supported structure (inertial forces) in the pile failure.
The influence of the soil profile on the behaviour of the pile kinematic bending moments
have received great attention during the last years. Particularly, numerous research works
[109–118] have studied the critical bending moments that arise at the interface between two
soil layers with sharply differing stiffness. Some of these works [113–117] facilitate design-
orientated expressions to estimate these maximum kinematic bending moments, as well as
the ones produced atop of the piles with a head-rotation restrain. Dezi and Poulos [118] also
proposed correction factors that can be used for including group effects in those expressions.
Regarding soils presenting a continuous non-homogeneity, few documents are available in
the literature. Di Laora and Rovithis [119] studied the kinematic bending of a single pile
embedded in various continuously non-homogeneous soils through a Winkler approach.

In order to contribute to the scope of continuously non-homogeneous media, the effects
of the variability of the soil profile on the seismic response of pile foundations are analysed
in this chapter. First, Section 4.2 presents complementary results that verify the applicabil-
ity of the developed model to reproduce the seismic response of pile foundations in non-
homogeneous media. After the verification process, the problem under study is defined in
Section 4.3. Then, the effects of the variability of the soil profile on the foundation kinematic
response are analysed in Section 4.4; while Section 4.5 extends how these results affect the
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supported structure maximum response. Section 4.6 studies how the kinematic response of
the foundation both in homogeneous and non-homogeneous media is influenced by the pile
head conditions. Finally, in Section 4.7 the use of equivalent homogeneous properties to es-
timate the maximum kinematic bending moments of pile foundations embedded in variable
soil profiles is discussed. At the end of the chapter, the main conclusions drawn from these
studies are listed in Section 4.8.

4.2 Verification results
The capability of the proposed formulation to estimate the internal forces of a pile subjected
to a seismic excitation was discussed in Section 2.8. It was found that, due to the omission
of the tangential tractions in the integral formulation, the shear forces of the pile cannot be
completely reproduced as the contributions of both the distributed moment produced by the
action of the incident field and the one produced as reaction of the surrounding soil against
the pile rotation are neglected. On the other hand, the seismic bending moments of the pile
are accurately estimated by the proposed model due to the small influence of those tangential
tractions on them.

In order to complete the verification of the proposed formulation for the seismic problem,
and to check its ability to reproduce the seismic response of the foundation in terms of dis-
placements, the results presented by Kaynia and Kausel [84] are reproduced in this section.
The methodology employed by those authors was based on the use of Green’s functions of
cylindrical loads in a layered media obtained through a layer stiffness approach [91].

The problem under study consists of a single pile or a 3×3 pile group embedded in two
different soils: a homogeneous viscoelastic half space (𝐸𝑝/𝐸𝑠 = 100) and a semi-infinite
medium in which the elastic modulus linearly increases from zero at the ground surface level
to 𝐸𝑝/𝐸𝑠 = 100 at a depth equal to the pile length and remains constant for the underlying
half space. The rest of the soil properties, which are assumed to be the same for the two
profiles, are: soil-pile density ratio 𝜌𝑠/𝜌𝑝 = 0.7, soil hysteretic damping ratio 𝛽𝑠 = 5% and
soil Poisson’s ratio 𝜈𝑠 = 0.4. On the other side, the pile properties are: pile hysteretic damping
ratio 𝛽𝑝 = 0%, pile Poisson’s ratio 𝜈𝑝 = 0.25, pile aspect ratio 𝐿/𝑑 = 20 and, for the group
configuration, centre-to-centre pile separation distance 𝑠/𝑑 = 5. The excitation of the system
corresponds to vertically-incident S-waves.

Fig 4.1 shows the absolute value of the ratio between the foundation lateral displace-
ment (𝑢) and the free-field displacement (𝑢𝑓𝑓 ) as function of the dimensionless frequency
𝑎𝑜 = 𝜔𝑑/𝑐𝑠, being 𝑐𝑠 the shear wave velocity in the soil (for the non-homogeneous profile,
the value corresponding at the pile tip level is assumed). The results of the integral model
(solid lines) are compared with the ones presented by Kaynia and Kausel (points), while the
different colours distinguish the two soil profiles. A good agreement is found between the
two different methodologies for both the homogeneous and variable soil media and the two
pile configurations. Note that in order to accurately reproduce the behaviour of the non-
homogeneous profile with the proposed formulation, a high enough number of piecewise
homogeneous layers is required. After a convergence analysis, 160 layers were used in order
to obtain the presented results.
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Figure 4.1: Lateral displacements of the foundation for different soil profiles. Comparison
with Kaynia and Kausel [84].

4.3 Problem definition
The problem addressed in this chapter consists in a vertical pile foundation subjected to a
vertically incident S-wave front. Special attention is given to the influence of considering the
actual variability of the soil profile by comparing with an equivalent homogeneous half space
in terms of mean properties. Also, the effects of the union condition between the piles and
the rigid cap on the foundation seismic response is analysed. A schematic representation of
the problem is depicted in Fig. 4.2.

Figure 4.2: Sketch of the seismic problem.

In order to obtain results with practical interest, a set of different pile configurations and
soil profiles are defined in the following through physical properties based on typical dimen-
sions and data obtained from real case scenarios.
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Foundation properties

Configurations of a single pile and 2 × 2 and 3 × 3 pile groups are considered. The results
of the selected pile groups allow extracting the trend of the behaviour of larger configurations.
Different geometries are assumed by combining the following parameters:

• pile length 𝐿 = 10 m, 30 m and 50 m.

• pile diameter 𝑑 = 0.5 m and 1.5 m.

• pile separation ratio 𝑠/𝑑 = 2 and 5.

In addition to these parameters, the foundation half-width 𝑏 is defined in order to normal-
ize some of the results, being its value equal to 𝑑, 𝑠 or 3𝑠/2 for the single, 2 × 2 and 3 × 3
configurations, respectively. For the pile groups, all piles are assumed to be identical and can
be connected to the rigid cap through a fixed union (default case) or by a hinged union (only
if stated in the results). On the other hand, the default boundary condition for the single pile
foundation corresponds to a completely free-head pile, but also the fixed-rotation condition
at the pile head is considered for comparison purposes.

Regarding the material properties of the piles, a Young’s modulus 𝐸𝑝 = 30 GPa, a pile
density 𝜌𝑝 = 2500 kg/m3 and a Poisson’s ratio 𝜈𝑝 = 0.2 are assumed as representative to solid
cross-section concrete piles and hollow steel piles (through equivalent solid cross-section
properties). The shear correction factor of the Timoshenko’s beam theory corresponding to
solid cross-sections (𝛼 = 0.9) is assumed. However, the results are virtually insensitive to
changing its value to the one corresponding to the hollow sections (𝛼 = 0.5). No material
damping is considered for the piles.

Soil properties

Variable-with-depth profiles are selected based on the regressed expressions proposed by
Wang and Wang [120]. In their work, they analysed two different databases with information
of real boreholes from California and Japan sites and applied a fitting procedure in order to
obtain linear and power-law expressions for the evolution of the shear wave velocity with
depth depending on the soil type classification [121,122].

For the analyses, the profiles corresponding to the California sites are chosen as these
soils are representative to other seismically active areas (e.g. the Mediterranean area). Also,
the power-law expressions are chosen over the linear ones because the former resulted in a
better fitting of the real data. Table 4.1 shows the formulas obtained by Wang and Wang for
the evolution of the shear wave velocity as functions of the depth 𝑧 for the three soil types
considered (corresponding to the softest soil types).

In order to measure the influence of assuming the variability of the soil profile, the results
of the selected media are compared with the ones obtained by considering an equivalent
homogeneous half space in terms of the average shear wave velocity 𝑐𝑠,30 [68, 121]. This
average velocity is defined in such a way that the time needed for the shear wave to travel along
the first 30 superficial meters is the same for both the variable and homogeneous profiles. For
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Site Class clasification (ASCE) Regressed expressions from empirical profiles [120]
Type 𝑐min

𝑠,30 𝑐max
𝑠,30 𝑐𝑠(𝑧) 𝑐𝑠,30 𝐸𝑝/𝐸𝑠(𝑐𝑠,30)

C 360 760 242 𝑧0.271 443.4 ≈ 30
D 180 360 126 𝑧0.317 253.0 ≈ 95
E - 180 80.9 𝑧0.297 156.2 ≈ 256

† Shear wave velocities in m/s

Table 4.1: Soil profiles used for the seismic analyses.

a discrete profile with 𝑁30 layers above the first 30 m, each layer 𝑖 with a thickness ℎ𝑖 and a
shear wave velocity 𝑐𝑠𝑖 , the average shear wave velocity is defined as:

𝑐𝑠,30 = 30
∑𝑁30

𝑖=1
ℎ𝑖
𝑐𝑠𝑖

(4.1)

While for a continuously varying profile, the definition of the average shear wave velocity can
be adapted to:

𝑐𝑠,30 = 30
∫30

0 (𝑐𝑠(𝑧))−1 d𝑧
(4.2)

The remaining soil properties are assumed to be constant with depth and equal to the
homogeneous and variable profiles: soil density 𝜌𝑠 = 1750 kg/m3, soil Poisson’s ratio 𝜈𝑠 =
0.4 and soil hysteretic material damping coefficient 𝛽𝑠 = 5%.

The behaviour of the continuously-varying profiles is simulated with the integral model
by discretizing the profile into piecewise homogeneous layers with a height of ℎ𝑙 = 0.125 m
along the first 50 m of the soil profile. Below this depth, a constant shear wave velocity is
assumed for the underlying half space. These values are obtained from a convergence study,
and neither increasing the discretization nor the maximum depth alters the presented results.
The evolution with depth of the shear wave velocity of the selected profiles together with the
homogeneous half spaces used in the analyses are depicted in Fig. 4.3 for the three considered
soil types.

Time excitation

The computation of the time response of the pile foundations requires the definition of
the time evolution of the excitation. For this purpose, three real accelerograms per soil type
are used as seismic input. Those accelerograms are extracted from the PEER Ground Motion
Database [123]. The information of the excitation signals is presented in Table 4.2, while
their time evolution is shown in Fig. 4.4.

In coherence with the definition of the variable soil profiles, the accelerograms corre-
spond to earthquake events produced in the California area with magnitudes between 6-7 and
measured in stations located over soils of type D or E. The accelerations are scaled, so all
signals present the same value of the ground maximum acceleration 𝑎𝑔.
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Figure 4.3: Shear wave velocity of the studied profiles.

RSN† Event Name Year Station Name 𝑐𝑠,30 (m/s)
322 Coalinga-01 1983 Cantua Creek School 275 (Type D)
766 Loma Prieta 1989 Gilroy Array #2 271 (Type D)
988 Northridge-01 1994 LA - Century City CC North 278 (Type D)
178 Imperial Valley-06 1979 El Centro Array #3 163 (Type E)
718 Superstition Hills-01 1987 Imperial Valley Wildlife Liquefaction Array 179 (Type E)
729 Superstition Hills-02 1987 Imperial Valley Wildlife Liquefaction Array 179 (Type E)

† Record Sequence Number of the database.

Table 4.2: Real accelerograms used in the seismic analyses. Source: PEER NGA-West2
Database [123].
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Figure 4.4: Time evolution of the real accelerograms used in the seismic analyses.
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4.4 Foundation kinematic interaction factors
The translational and rotational kinematic interaction factors are defined as 𝐼𝑢 = 𝑢/𝑢𝑓𝑓 and
𝐼𝜑 = 𝜑𝑏/𝑢𝑓𝑓 , respectively, being 𝑢 and 𝜑 the lateral displacement and rotation at the centre
of the foundation, and 𝑢𝑓𝑓 the free field displacement at surface level, as depicted in Fig.
4.2. These kinematic interaction factors are complex-valued and frequency-dependent terms
that indicate how the soil seismic motion is transmitted to the supported structure by the
foundation.

In the following, a frequency range between 0 and 160 rad/s is considered, as the energy
content of typical earthquakes lies within this range. Furthermore, this range coincide with
the frequencies that a sampling of 50 Hz can capture, being that sampling frequency the one
of most of the considered earthquake signals.

The influence of the variability of the soil profile on the kinematic interaction factors is
analysed by comparing the results of the non-homogeneous profiles (black lines) with respect
to the ones of their equivalent homogeneous half space in terms of 𝑐𝑠,30 (blue lines). Also the
results for the stiffest (𝑐max

𝑠,30 , red lines) and softest (𝑐min
𝑠,30, green lines) homogeneous profiles

for each soil type are presented in order to enrich the comparison. Thus, the results presented
along this section give an insight into the importance of considering the actual soil profile in
the estimation of the foundation seismic motion.

As an example, Figs. 4.5 and 4.6 present the translational and rotational kinematic in-
teraction factors, respectively, for a free-head single pile embedded in the three studied soil
profiles. The results of the six sets of pile dimensions are presented in different rows. The real
part of the kinematic interaction factors is presented with a solid line, while the imaginary
component is displayed with a dashed line.

Attending to these results, it is found that the responses of the three pile geometries with
the smallest diameter (𝑑 = 0.5 m) are nearly identical. In the same way, the two configurations
of diameter 𝑑 = 1.5 m and slender piles (𝐿/𝑑 ≥ 20) also exhibit virtually the same behaviour.
For that reason, and in order to present the obtained results in the most compact way, only the
kinematic interaction factors corresponding to the representative configurations are displayed
in the following. Thus, the results of the configuration 𝐿 = 30 m, 𝑑 = 0.5 m (labelled as
𝐿30𝑑0.5) also represent the ones of configurations 𝐿 = 10 m, 𝑑 = 0.5 m and 𝐿 = 50 m,
𝑑 = 0.5 m; while the results corresponding to the configuration 𝐿 = 30 m, 𝑑 = 1.5 m
(labelled as 𝐿30𝑑1.5) also describes the ones of configuration 𝐿 = 50 m, 𝑑 = 1.5 m. These
representative configurations are highlighted in Figs. 4.5 and 4.6 and are found to be also
valid for the results of the pile groups.

In the following sections, the kinematic interaction factors obtained for the representative
configurations of free-head single piles and pile groups with fixed cap-pile union embedded in
soils of type D and E are thoroughly analysed. These two soil types correspond to soft soils in
which the use of pile foundations is typically required in order to safely support constructions.
Nevertheless, in Section 4.4.3 the effects of the soil variability on the kinematic interaction
factors for a soil type C are briefly described.
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Figure 4.5: Translational kinematic interaction factors for free-head single piles. Represen-
tative configurations highlighted in light-gray. (Imaginary components presented by dashed
lines).
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Figure 4.6: Rotational kinematic interaction factors for free-head single piles. Representative
configurations highlighted in light-gray. (Imaginary components presented by dashed lines).
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Figure 4.7: Translational kinematic interaction factors for single piles. (Imaginary compo-
nents presented by dashed lines).

4.4.1 Translational kinematic interaction factors (𝐼𝑢)
Fig. 4.7 presents the translational kinematic interaction factors for free-head single pile foun-
dations embedded in soils of type D and E. The results of the representative configurations are
displayed along the three rows. The first column shows the real (solid lines) and imaginary
(dashed lines) components of the kinematic interaction factors for soil type D, while their
absolute value is presented in the second column. On the other hand, the third and fourth
columns present the real/imaginary and absolute values of the kinematic interaction factor
for soil type E, respectively.

Attending to the results of soil D, it is found that the real component of 𝐼𝑢 decays to a
greater extent for the variable profile rather than for its equivalent homogeneous soil (or even
for the homogeneous soil with minimum shear velocity). The effect of the variability of the
soil profile is also seen for the imaginary component with a higher increment of its value as
the frequency augments. Comparing the absolute value of the interaction factors for the non-
homogeneous and its equivalent-homogeneous profiles for this soil type, it is found that in
the low-frequency range both profiles present nearly the same values (the ones of the varying
profile are slightly higher), while for larger frequencies the varying profile filters the ground
motion to a greater extent with respect to its homogeneous equivalent profile. These results
agree with the findings of previous works [84,94]. Attending to the classical representation of
the interaction factors against the dimensionless frequency, it can be understood that, owing to
its higher diameter (and, consequently, higher 𝑎𝑜 for the same range of 𝜔), the configurations
with 𝑑 = 1.5 m present lower values of |𝐼𝑢| at smaller frequencies than the foundations with
𝑑 = 0.5 m.

On the other hand, for the soil type E, the effects of the variability of the profile com-
mented above are intensified. The absolute value of the kinematic interaction factor for the
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Figure 4.8: Translational kinematic interaction factors for 2 × 2 pile groups. (Imaginary
components presented by dashed lines).

configuration 𝐿30𝑑1.5 even vanishes for frequencies higher than 110 rad/s only for the non-
homogeneous profile. A singular situation is found in this soil type for the configuration
𝐿10𝑑1.5 (corresponding to the shortest pile), as for high frequencies the variable profile
presents higher |𝐼𝑢| than its equivalent homogeneous one.

Fig. 4.8 presents the translational kinematic interaction factors for the 2 × 2 pile groups
under study. The disposition of the results is the same as the one presented in Fig. 4.7, with
the exception that now two rows per configuration are displayed in order to show the results
for the two studied separation distances 𝑠/𝑑. In general terms, it is found that for pile groups
the effects of the variability of the soil profile can be observed at frequencies lower than those
for the single pile. Furthermore, since for group configurations the absolute value of the trans-
lational kinematic interaction factor is always below unity, the results corresponding to the
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non-homogeneous profiles are always smaller than the ones of their equivalent homogeneous
soil in the low-frequency range.

The absolute values corresponding to the smallest distance between piles (𝑠/𝑑 = 2) show
that, for the 𝐿30𝑑0.5 and 𝐿10𝑑1.5 configurations, the varying profiles filter the seismic exci-
tation to a greater extent than their 𝑐𝑠,30 homogeneous profiles along all the studied frequency
range. On the other hand, for configuration 𝐿30𝑑1.5 there is an interval of frequencies (100-
160 rad/s for soil D, and 45-90 rad/s for type E) in which the non-homogeneous profiles
present higher values of |𝐼𝑢| than their homogeneous equivalent ones. This effect is mainly
produced due to the larger values of the imaginary component of the results for the vari-
able profile, in addition to the fact that their real component reaches more negative values
at smaller frequencies for this profile. Also, for this specific configuration (𝐿30𝑑1.5 and
𝑠/𝑑 = 2), it is important to highlight the large oscillations with the frequency that can be
found in the real and imaginary components of the 𝐼𝑢 in the high-frequency range. These
oscillations occur both for the variable and the homogeneous profiles.

Regarding the influence of increasing the separation distance between the piles in the
group, it has a minor effect on the 𝐿30𝑑0.5 configuration, just slightly increasing the higher
filtering effect of the varying profile in the medium-high-frequency range. On the contrary,
for the configurations represented by 𝐿30𝑑1.5, increasing the distance between the piles sig-
nificantly diminishes the above-mentioned high oscillations of the real and imaginary com-
ponents of the 𝐼𝑢 at large frequencies. This phenomenon may indicate that this oscillatory
behaviour is produced by the pile-to-pile interaction between the elements of the group, which
is reduced as the distance between piles increases.

Fig. 4.9 shows now the results for the 3 × 3 configurations. The translational kinematic
interaction factors and the effects of the soil profile variability and pile separation obtained
for these pile groups are analogous to the ones corresponding to the 2 × 2 groups. Attending
to the results of 𝐿30𝑑1.5, increasing the number of piles in the group is found to augment
the oscillations of the real and imaginary components at high frequencies for all soil profiles
due to the higher number of piles that can interact with each other.

4.4.2 Rotational kinematic interaction factors (𝐼𝜑)
Fig. 4.10 shows the rotational kinematic interaction factors for the monopile configurations
embedded in soil types D and E following the same distribution that was used for the transla-
tional factors in the previous section. In general terms, two zones with different behaviours
can be distinguished in the obtained results. In the low-frequency range, the variable pro-
files present larger rotations at the pile head than their equivalent homogeneous soils. On
the other hand, in the medium-high-frequency zone the real and imaginary components of
the variable profiles decrease their values, changing their signs for large frequencies. This
significant sign change is not produced for any of the homogeneous profiles in the studied
frequency range. The two different zones can be also recognized in the absolute value of the
rotational kinematic interaction factors. In the low-frequency range the |𝐼𝜑| of the varying
profiles exceed the ones of the 𝑐𝑠,30 homogeneous profile; while, in the medium-high range,
the non-homogeneous profiles present smaller rotations than the uniform soils. The frequen-
cies that separate the two different zones depend on the diameter of the configuration and the
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Figure 4.9: Translational kinematic interaction factors for 3 × 3 pile groups. (Imaginary
components presented by dashed lines).

70 Integral model based on advanced fundamental solutions for the dynamic analysis of piles



SEISMIC RESPONSE OF PILE FOUNDATIONS

.

4

-0.3

0.0

0.3

0.6

L30d0.5

Re[ Iϕ ],  Im[ Iϕ ]  -  Type D

cs,30
min

cs,30
max

cs,30

cs(z)

-0.3

0.0

0.3

0.6

L10d1.5

-0.3

0.0

0.3

0.6

0 30 60 90 120 150

L30d1.5

ω (rad/s)

Re[ Iϕ ],  Im[ Iϕ ]  -  Type E

0 30 60 90 120 150
ω (rad/s)

0.0

0.2

0.4

0.6

Abs[ Iϕ ]  -  Type D

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

0 30 60 90 120 150
ω (rad/s)

Abs[ Iϕ ]  -  Type E

0 30 60 90 120 150
ω (rad/s)

Figure 4.10: Rotational kinematic interaction factors for single piles. (Imaginary components
presented by dashed lines).

soil type: approximately being 100 rad/s for 𝑑 = 0.5 m and Soil E, and 90 or 42 rad/s for
𝑑 = 1.5 m and Soil D or E, respectively.

For soil type E, and coinciding with what was found for the translational interaction fac-
tors, the |𝐼𝜑| vanishes at frequencies over 110 rad/s for the 𝐿30𝑑1.5 configurations. Also,
the singular behaviour of the 𝐿10𝑑1.5 configuration of presenting a higher response for the
varying profile than for the equivalent homogeneous at high frequencies is also seen in the
rotational factors.

The results for the 2 × 2 configurations are presented in Fig. 4.11. A significant reduction
of the rotational kinematic interaction factors is found for the pile group, despite the value
of 𝑏 that is used for the normalization augments with respect to the one of the single pile.
This reduction is a well-known effect, which is produced by the vertical stiffness of the piles
that restricts the rotation of the cap. Only the configuration 𝐿10𝑑1.5 (shortest piles) presents
results on the order of the ones of the single pile. Note that the same range is kept for all
the figures that display the same variable in order to ease the comparison between them.
Nevertheless, the results for the group configuration exhibit analogous behaviours as the ones
of the single pile, also presenting the two frequency zones that were commented above.

Regarding the results corresponding to the foundations with closer piles (𝑠/𝑑 = 2), the
rotational interaction factors of the 𝐿30𝑑1.5 configuration again present an oscillatory be-
haviour in its real and imaginary components at large frequencies for soil type E. These os-
cillations are likewise found in the absolute values of the homogeneous soils, but not for the
|𝐼𝜑| of the variable profile. On the other hand, for soil type D this configuration (𝐿30𝑑1.5
𝑠/𝑑 = 2) presents nearly the same rotational interaction factors for the non-homogeneous and
the equivalent homogeneous soils in terms of the absolute value, despite important differences
can be observed between their real and imaginary components.

Attending to the effects of the distance between piles, increasing their separation slightly
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Figure 4.11: Rotational kinematic interaction factors for 2 × 2 pile groups. (Imaginary com-
ponents presented by dashed lines).
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Figure 4.12: Rotational kinematic interaction factors for 3 × 3 pile groups. (Imaginary com-
ponents presented by dashed lines).

reduces the rotation of the group. The most noticeable difference between the results of the
two 𝑠/𝑑 values are found for the 𝑑 = 1.5 m configurations: when the distance between the
piles increases, the two frequency zones of different behaviours are appreciated in a clearer
way, being the |𝐼𝜑| values of the varying profiles lower than the ones of the equivalent homo-
geneous soil at large frequencies. In addition to this, and coinciding with what was found for
the translational factors, the increment of the separation between the piles removes the high-
frequency oscillations in the rotational interaction factors for the configurations 𝐿30𝑑1.5 in
soil E.

Finally, Fig. 4.12 displays the rotational kinematic interaction factors for the configura-
tions of 3 × 3 pile groups. As found in the previous results, the increment in the number of
piles drastically reduces the rotation of the cap. The shape of the interaction factors of the
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Figure 4.13: Kinematic interaction factors for 3 × 3 pile groups embedded in soil type C.
(Imaginary components presented by dashed lines).

3 × 3 groups are similar to the ones of the 2 × 2 groups. The only aspect that is worthy of
mention is the fact that for the 𝐿30𝑑1.5 configuration the oscillations in the absolute value of
𝐼𝜑 at large frequencies for the homogeneous profiles disappear and are replaced by an almost
linear increase with frequency.

For these pile foundations, also increasing the separation between the piles further reduces
the rotation at the centre of the cap. However, the influence of the separation distance is lower
than the one of the increment in the number of piles of the group.

4.4.3 Kinematic interaction factors for soil type C
The study of the effects of the soil profile variability has also been carried out for the soil
type C. In addition to the results for the single pile configurations presented before in Figs.
4.5 and 4.6, Fig. 4.13 displays the translational and rotational kinematic interaction factors
for the representative configurations of the 3 × 3 pile groups. Only the real and imaginary
components are shown and the results of the two different separation distances are presented
in different columns.

Regarding the translational interaction factors, the results have practically a static be-
haviour (𝐼𝑢 ≈ 1) along the studied frequency range, so virtually no differences are found
between the results of the variable and homogeneous profiles. Only for the group configura-
tions with large diameters (𝑑 = 1.5), the filtering effect of the foundation is perceived at high
frequencies for the non-homogeneous and softest homogeneous profiles.

On the other hand, the magnitude of the rotational kinematic interaction factors of the
non-homogeneous soil significantly overtakes the one of the homogeneous profiles for all the
frequency range. Those differences between the varying and constant profiles are produced
only by the contribution of the real component of the interaction factors, as their imaginary
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component is almost negligible. Note that, as this soil type is stiffer than the ones studied in
the previous section, only the behaviour of the low-frequency zone is seen for the considered
frequency range.

4.5 Structural maximum accelerations
In order to illustrate the effects that the differences in the kinematic interaction factors previ-
ously studied could have on the response of the supported structure, results are also presented
in terms of pseudo-spectral accelerations (PSA) along this section.

The structural time response is obtained from the kinematic interaction factors following
the standard frequency-domain method [67] and using the accelerograms presented in Section
4.3. These acceleration signals are assumed to be located at the free-surface level. In order
to include the contribution of the rotational kinematic interaction factors in the spectra of
maximum response, different structural height ratios ℎ/𝑏 are considered going from ℎ/𝑏 = 0
(neglecting the contribution of the cap rotation) to ℎ/𝑏 = 10.

The results are presented not only in terms of the elastic response spectra for both the
variable (𝑃 𝑆𝐴𝑐𝑠(𝑧)(𝑇 )) and equivalent homogeneous (𝑃 𝑆𝐴𝑐𝑠,30(𝑇 )) soil profiles, but also in
terms of the difference between them which is computed as:

Δ𝑃 𝑆𝐴(𝑇 ) = 𝑃 𝑆𝐴𝑐𝑠,30(𝑇 ) − 𝑃 𝑆𝐴𝑐𝑠(𝑧)(𝑇 ) (4.3)

where 𝑇 is the structural period in seconds. The difference Δ𝑃 𝑆𝐴 is defined in order to
ease the analysis of the influence of the soil profile on the structural response. A positive
value of Δ𝑃 𝑆𝐴 indicates that the homogeneous assumption is conservative; while a negative
value implies that higher structural accelerations are obtained if the actual variable profile is
considered. The response spectra and their differences are expressed in terms of the maximum
ground acceleration of the excitation signal 𝑎𝑔.

Fig. 4.14 presents the elastic response spectra for the variable (black lines) and equivalent
homogeneous (blue lines) profiles for the representative configuration 𝐿30𝑑1.5 of a free-head
single pile embedded in soils D and E. Also the corresponding differences Δ𝑃 𝑆𝐴 for each soil
type are shown. The results of the different accelerograms are indicated by different line styles
according to Fig. 4.4.

Attending to the PSA obtained for soil type D, the results of both profiles practically
coincide if the contribution of the rotation of the cap is neglected (ℎ/𝑏 = 0). However, as the
height of the structure is increased, the differences between the non-homogeneous and the
constant profile augment. These differences are especially relevant for periods around 0.25
s, but are extended to almost all the studied range for the extreme scenario of ℎ/𝑏 = 10. This
effect of the ℎ/𝑏 parameter is also found for the soil type E. Moreover, even for the case of
ℎ/𝑏 = 0 some differences between the results of the varying and equivalent homogeneous
profiles can be seen for all the structural period range. For this soil type and for low periods
(𝑇 ≈ 0.1 s) the accelerations of the homogeneous profile surpass the ones of the variable
profile. Also, for soil E, the effects of the structural height on the magnitude of the 𝑃 𝑆𝐴 are
more important than for soil D (note the change of the ordinate-axis scale).
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Figure 4.14: Elastic response spectra (PSA) and differences between results of the equivalent
homogeneous and non-homogeneous profiles (Δ𝑃 𝑆𝐴). Single pile, configuration 𝐿30𝑑1.5.

These effects of the soil profile on the structural maximum accelerations are also seen
and in a clearer way attending to the results of Δ𝑃 𝑆𝐴. The homogeneous assumption tends to
under-predict the structural maximum accelerations except for systems with very low periods.
The highest differences between the two profiles are found around 𝑇 = 0.25 s, for which the
equivalent homogeneous soil produces a maximum response that can be up to two times the
ground peak acceleration lower than the one of the actual profile.

Fig. 4.15 displays the differences between the pseudo-spectral accelerations Δ𝑃 𝑆𝐴 now
for a group configuration of 3 × 3 piles with 𝐿30𝑑1.5. For this pile group, and because the
rotational kinematic interaction factor (𝐼𝜑) is drastically reduced when the number of piles
increases, the effects of the structural height are almost negligible, being only appreciable for
the largest height ratio (ℎ/𝑏 = 10). The differences between the two profiles are more evident
for the softer soil type (E), and for the groups with closer piles (𝑠/𝑑 = 2). In general terms,
for this configuration the equivalent homogeneous profiles produce higher acceleration values
than the variable soils for low periods. However, negative values of Δ𝑃 𝑆𝐴 exist for soil type
E along the whole period range which can be significant.

The results presented in Figs. 4.14 and 4.15 illustrate the general trends that are obtained
for all studied configurations. However, more detailed information is given in Tables 4.3 (soil
type D) and 4.4 (soil type E). Those tables contain the minimum value of Δ𝑃 𝑆𝐴 that is ob-
tained for all the representative configurations separated into different period intervals. The
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Figure 4.15: Differences between the elastic response spectra of the equivalent homogeneous
and non-homogeneous profiles (Δ𝑃 𝑆𝐴). 3 × 3 pile group, configuration 𝐿30𝑑1.5.

period division is done according to the one proposed in the Eurocode [68] for the definition
of the Type 2 spectra for each ground type (note that although the letters of the different soil
types do not coincide between the Eurocode and ASCE definitions, the intervals of 𝑐𝑠,30 that
delimit each type are nearly the same). The information presented in Tables 4.3 and 4.4 al-
low the estimation of the importance of considering the variability of the soil profile when
studying the structural maximum acceleration response under different scenarios. The mini-
mum values for each row and column are indicated by bold and italic fonts, respectively. The
former indicates for which structural properties neglecting the actual evolution of the pro-
file leads to the most unsafe scenario, while the latter indicates the foundation configuration
which is most sensitive (with unfavourable effects) to the variability of the soil profile.

Attending to the results, and summarizing all the previous discussion, the soil type E
presents higher differences between the non-homogeneous and equivalent homogeneous pro-
files. These differences are magnified as the structural height ratio augments due to the higher
contribution of the rotational kinematic interaction factors to the structural response. Thus,
including the 𝐼𝜑 of the foundation is found to increase the accelerations of the variable profile
with respect to the constant one. This effect is explained attending to the rotational kinematic
interaction factors presented above: in the low-frequency zone (which is the one that usually
contains more energy of the seismic excitation) the variable profiles present higher rotations
than their homogeneous equivalent ones. This effect is especially relevant for the single pile
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configuration, for which assuming the homogeneous profile can lead to a difference in the
structural maximum accelerations with respect to the ones of the variable profile that can be
over four times the peak ground acceleration. On the other hand, for pile groups these differ-
ences are generally not important (specially for soil type D), being the homogeneous assump-
tion on the side of safety. However, for group configurations that present non-negligible cap
rotations (i.e., closely spaced and small number of piles) founding slender structures, the vari-
able profile can present maximum accelerations up to 1 𝑎𝑔 larger than the ones obtained by
considering the equivalent homogeneous profile. Configurations with short piles (𝐿10𝑑1.5)
are found to be the ones that present the highest negative differences among the pile groups
under study.

4.6 Influence of the pile head condition on the foundation
seismic input factors

The boundary conditions at the head of the piles assumed in the previous section (free-head
for the single pile and fixed union to the rigid cap for the pile groups) are the ones normally
found in constructive solutions. However, after unexpected events, such as earthquakes, the
pile head can fail due to the excessive stresses that act over this point. In that situation, the
material at the pile head will plastify and can be treated as a hinged union between the rigid
cap and the rest of the embedded pile. In this section, the influence of the condition at the
pile head on both the foundation filtering effect of the seismic motion, and on the spectral
response of the supported structure is analysed.

The configuration of a single pile is used as starting point as it corresponds to the sim-
plest scenario. The two head conditions will correspond to a completely free-head (no forces
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Figure 4.16: Influence of head condition on the translational kinematic interaction factors of
single piles. (Imaginary components presented by dashed lines).
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acting over it) and a fixed-rotation condition in which the rotation of the pile at head level
is imposed to be zero. Fig. 4.16 presents the translational kinematic interaction factors for
the representative single pile configurations considering the two studied profiles for each soil
types D and E. The results corresponding to the fixed and free head conditions are shown
with the light and dark versions of each colour, respectively (see figure key). Restricting the
rotation of the pile head results in a reduction in the lateral displacements of the foundation
for all the scenarios. This reduction can be explained considering that the fixed condition
increases the pile stiffness (as a cantilever beam) and, thus, reduces the response at the pile
head. Another approach to explain this phenomenon is the fact that part of the energy trans-
mitted to the pile by the soil is absorbed by the rotation restriction and cannot be transformed
into motion.

One aspect to highlight is the fact that there is no frequency range for which the foundation
amplifies the ground response if the fixed condition is assumed for the single pile. This
absence of amplification is comparable to the behaviour of the fixed-to-the-cap pile groups
studied in Section 4.4. On the contrary, for the free-head single piles the amplification of the
ground motion can be up to a 20% depending on the pile and soil properties.

Regarding the influence of the variability of the soil profile, its effects are the same re-
gardless the pile head boundary condition. Thus, all the discussion presented in the previous
section is valid for both the fixed and free head piles. Also, the frequency dependence of the
translational kinematic interaction factors is similar between the two head conditions, with a
slight shift of the curves toward smaller frequencies for the fixed-rotation condition.

Fig. 4.17 presents the translational kinematic interaction factors for the representative
3 × 3 pile groups assuming either a fixed (light colours) or hinged (dark colours) union to
the rigid cap. As found for the single pile, the hinged condition at the pile head increases the
displacements of the foundation, reaching values of the translational kinematic interaction
factor that correspond to amplifications of the ground motion at certain frequencies. As com-
mented in the results of the single pile, there is no change in the importance of the variability
of the soil profile with the head condition, and the evolution with frequency of the group
displacements moves toward higher frequencies if the piles are hinged.

Fig. 4.18 now shows the rotational kinematic interaction factors for the same 3×3 config-
urations and head conditions. Note that the trivial comparison between the rotational factors
for the single pile was omitted as there is no rotation of the pile head if the fixed condition is
assumed. The rotational kinematic interaction factors of the pile groups are strongly affected
by the pile-cap union condition. If a hinged union is assumed, the rotation of the pile cap is
significantly reduced. Depending on the configuration, reductions over 4 times in the group
rotation can be found along wide frequency ranges. This decrement in the rotation of the cap
is produced because the rotation induced by the incident field in the piles is no longer trans-
mitted to the cap. Thus, despite from a pile point of view the hinged condition implies larger
rotations, articulating the pile-cap union drastically reduces the rotational kinematic interac-
tion factors of the foundation. Note that in Fig. 4.18 the ordinate scale has been amplified in
order to see the differences.

Following the same procedure as done for studying the effects of the variability of the soil
profile, the influence of the pile head condition over the supported structure is analysed in
terms of the differences between the PSA corresponding to the two configurations. For this

Instituto Universitario SIANI 81



4
.

SEISMIC RESPONSE OF PILE FOUNDATIONS

-0.5

0.0

0.5

1.0

L30d0.5 (s/d=2)

Re[ Iu ],  Im[ Iu ]  -  Type D

-0.5

0.0

0.5

1.0

L30d0.5 (s/d=5)

-0.5

0.0

0.5

1.0

L10d1.5 (s/d=2)

-0.5

0.0

0.5

1.0

L10d1.5 (s/d=5)

-0.5

0.0

0.5

1.0

L30d1.5 (s/d=2)

-0.5

0.0

0.5

1.0

0 30 60 90 120 150

L30d1.5 (s/d=5)

ω (rad/s)

Re[ Iu ],  Im[ Iu ]  -  Type E

0 30 60 90 120 150
ω (rad/s)

0.0

0.4

0.8

1.2

Abs[ Iu ]  -  Type D

cs,30

cs(z)
cs,30

cs(z)

0.0

0.4

0.8

1.2

0.0

0.4

0.8

1.2

0.0

0.4

0.8

1.2

0.0

0.4

0.8

1.2

0.0

0.4

0.8

1.2

0 30 60 90 120 150
ω (rad/s)

Abs[ Iu ]  -  Type E

0 30 60 90 120 150
ω (rad/s)

fixed: hinged:

Figure 4.17: Influence of head condition on the translational kinematic interaction factors of
3 × 3 pile groups. (Imaginary components presented by dashed lines).

82 Integral model based on advanced fundamental solutions for the dynamic analysis of piles



SEISMIC RESPONSE OF PILE FOUNDATIONS

.

4

-0.1

0.0

0.1

0.2

L30d0.5 (s/d=2)

Re[ Iϕ ],  Im[ Iϕ ]  -  Type D

cs,30

cs(z)

cs,30

cs(z)

-0.1

0.0

0.1

0.2

L30d0.5 (s/d=5)

-0.1

0.0

0.1

0.2

L10d1.5 (s/d=2)

-0.1

0.0

0.1

0.2

L10d1.5 (s/d=5)

-0.1

0.0

0.1

0.2

L30d1.5 (s/d=2)

-0.1

0.0

0.1

0.2

0 30 60 90 120 150

L30d1.5 (s/d=5)

ω (rad/s)

Re[ Iϕ ],  Im[ Iϕ ]  -  Type E

0 30 60 90 120 150
ω (rad/s)

0.0

0.1

0.2

Abs[ Iϕ ]  -  Type D

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

0 30 60 90 120 150
ω (rad/s)

Abs[ Iϕ ]  -  Type E

0 30 60 90 120 150
ω (rad/s)

fixed: hinged:

Figure 4.18: Influence of head condition on the rotational kinematic interaction factors of
3 × 3 pile groups. (Imaginary components presented by dashed lines).
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Figure 4.19: Differences between the elastic response spectra of the free and fixed-rotation
pile head condition (Δh.c.

𝑃 𝑆𝐴). Single pile, configuration 𝐿30𝑑1.5.

purpose, the magnitude Δh.c.
𝑃 𝑆𝐴 is defined as:

Δh.c.
𝑃 𝑆𝐴(𝑇 ) = 𝑃 𝑆𝐴fixed condition(𝑇 ) − 𝑃 𝑆𝐴hinged condition(𝑇 ) (4.4)

A positive value of Δh.c.
𝑃 𝑆𝐴 implies that the maximum response of the structure is larger when

assuming a fixed-head configuration, while a negative value means that the articulation of the
pile head leads to higher structural accelerations.

Fig. 4.19 presents the values of Δh.c.
𝑃 𝑆𝐴 for the configuration labelled as 𝐿30𝑑1.5 of a sin-

gle pile embedded in a soil type D or E and considering both the variable (dark grey) and
equivalent homogeneous (blue) profile. For the single pile foundation, the effect of the pile
head condition is the same for all the scenarios: the free-head foundation leads to a higher
structural response in terms of maximum accelerations. Note that the magnitude of the trans-
lational and rotational kinematic interaction factors is larger for the free-head condition than
for the fixed-rotation one. The difference between the two head types increases for slender
structures due to the contribution of the foundation rotation (which is zero for the fixed-head).
As found for the differences associated to the variability of the soil profile, the effects of the
pile head conditions are amplified for the softest soil type and the maximum values are found
for structural periods near 0.15 s. Note that the scale of the ordinate axes has been increased
for Fig. 4.19.
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Figure 4.20: Differences between the elastic response spectra of the hinged and fixed pile-cap
union condition (Δh.c.

𝑃 𝑆𝐴). 3 × 3 pile group, configuration 𝐿30𝑑1.5. Soil Type D.

The differences in the structural acceleration spectra associated to the pile-cap union con-
dition for the representative configuration 𝐿30𝑑1.5 of 3×3 pile groups are shown in Fig. 4.20
for soil type D and in Fig. 4.21 for soil type E. For the group configuration two different ef-
fects are found depending on the slenderness of the supported structure. For short buildings,
assuming a hinged pile-cap union leads to higher accelerations as the response of these con-
figurations are governed by the translational kinematic interaction factors (which are larger
for the hinged piles). On the other hand, for slender structures the opposite effect is found due
to the reduction in the rotational kinematic interaction factors that is produced by the articula-
tion of the pile heads. Thus, for slender buildings the fixed pile-cap union produces a higher
structural response. This effect is more important for configurations with larger rotations (i.e.,
small number of piles and close separation distances).

In order to complete the information for all of the representative configurations, Tables
4.5 and 4.6 (soil type D) and Tables 4.7 and 4.8 (soil type E) present the values of Δh.c.

𝑃 𝑆𝐴 that
correspond to the largest differences associated to the pile head condition. Tables 4.5 and 4.7
display the values for which the fixed condition leads to the maximum structural response,
while Tables 4.6 and 4.8 show the highest differences for which the hinged assumption is more
unfavourable. Furthermore, the text colour of each value indicates if the maximum difference
is produced for the variable (black) or equivalent homogeneous (blue) soil profile.

As commented before, it can be found that for short structures the pile group configu-
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Figure 4.21: Differences between the elastic response spectra of the hinged and fixed pile-cap
union condition (Δh.c.

𝑃 𝑆𝐴). 3 × 3 pile group, configuration 𝐿30𝑑1.5. Soil Type E.

rations with hinged piles produce a higher structural response. For slender buildings, on
the contrary, the fixed pile-cap union leads to larger maximum acceleration of the supported
structure. The influence of the pile head condition is more important for the softer soil type,
specially to the period range corresponding to the constant zone of the normalized spectrum
(𝑇1 < 𝑇 < 𝑇2). The configuration most sensitive to the pile head condition is again the one
labelled as 𝐿10𝑑1.5, corresponding to the foundation with the shortest piles. Attending to the
text colour of the results, it is found that the scenarios in which the hinged condition leads to
higher structural responses are produced for the variable profile, while the cases with higher
accelerations for the hinged piles generally correspond to the homogeneous profile. However,
attending to the results presented in Figs. 4.20 and 4.21, the magnitude of the differences due
to the pile head condition is found to be similar regardless the variation of the soil profile.

4.7 Pile kinematic bending moments
The seismic analysis of the pile foundations is completed by studying how the kinematic
bending moments of the piles are affected by the variability of the soil profile and the pile
head condition. For this purpose, envelopes of maximum bending moments are obtained for
the six studied pile geometries (diameters and lengths). As stated for the PSA analyses, the
standard frequency domain method [67] is followed in order to obtain the time response of
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Figure 4.22: Influence of the variability of the soil profile on the pile envelope of maximum
bending moments. Fixed-rotation at head single piles.

the piles. In order to present the bending moments in physical units, a maximum ground
acceleration 𝑎𝑔 = 0.25𝑔 is assumed.

Fig. 4.22 shows the envelopes of maximum bending moments for the fixed-head single
piles embedded in soil types D and E. The results for each diameter value are shown in differ-
ent columns, while the envelopes of the different pile lengths are displayed in different rows.
As done in the previous sections, the results corresponding to the variable profile are shown
with black lines, while the ones of the homogeneous equivalent profile are displayed by blue
lines. The different line types correspond to the three studied accelerograms per soil type
following Fig. 4.4.

The results show that the maximum bending moments at the pile head that are obtained for
the variable profile are significantly larger than the ones obtained by assuming an equivalent
homogeneous profile with identical 𝑐𝑠,30. For configurations with small diameter, the value
of the head bending moments considering the variable profile can be more than three times
larger than the ones of the homogeneous media. The differences in the head bending moment
are significant for both soil types, being the relative difference slightly higher for soil type
D. This increase in the value of the bending moment is produced due to the softer superficial
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Figure 4.23: Influence of the variability of the soil profile on the pile envelope of maximum
bending moments. Free-head single pile.

layers that constitute the variable profile. On the other hand, for the rest of the pile length
(approximately below 5 m), the maximum bending moments obtained by the homogeneous
assumption significantly overtake the ones of the variable profile.

The over-estimation of the envelope of bending moments by the homogeneous profile
can be found along all the pile length for the free-head pile configurations, as illustrated by
Fig. 4.23. Note that the envelopes obtained by the homogeneous profile can be over three
times larger than the ones produced by the actual variable profile along all the pile. Thus, for
estimating the pile maximum bending moments the homogeneous assumption is not accurate.

To verify that the conclusions obtained for the single pile can be extrapolated to pile group
configurations, Figs. 4.24 (fixed condition) and 4.25 (hinged condition) show the envelopes
of maximum bending moments obtained for the different studied pile groups together with the
results of the corresponding single pile. For clarity’s sake, only the results obtained for one of
the three used accelerograms per soil type are shown (Coalinga-01 and Imperial Valley-06).
This choice of input signals does not alter the conclusions of the analysis. For the 3 × 3 pile
group only the envelopes corresponding to the central pile are shown, but the effect of the
pile position on the maximum bending moments is discussed later in this section.

92 Integral model based on advanced fundamental solutions for the dynamic analysis of piles



SEISMIC RESPONSE OF PILE FOUNDATIONS

.

4

0

10

20

30

40

50

Type D

z 
(m

)

d = 0.5

0

10

20

30

40

50

z 
(m

)

0

10

20

30

40

50

0 4 8 12

z 
(m

)

M (kN m)

d = 1.5

0 150 300 450

M (kN m)

0

10

20

30

40

50

Type E

z 
(m

)

d = 0.5

0

10

20

30

40

50
z 

(m
)

0

10

20

30

40

50

0 8 16 24

z 
(m

)

M (kN m)

d = 1.5

0 300 600 900

M (kN m)

cs,30: cs(z):

single pile
2x2 (s/d=2)
2x2 (s/d=5)
3x3 (s/d=2)
3x3 (s/d=5)

single pile
2x2 (s/d=2)
2x2 (s/d=5)
3x3 (s/d=2)
3x3 (s/d=5)

Figure 4.24: Influence of the group configuration on the pile envelope of maximum bending
moments. Fixed pile-cap union condition.

Attending to the obtained results, it is found that the envelopes of the single pile config-
urations accurately estimate the maximum bending moments of the piles within the groups.
Pile-to-pile interaction effects play a minor role in the envelopes, being noticeable only for
the configurations with closer piles (𝑠/𝑑 = 2) and large diameters (𝑑 = 1.5 m). The pile-to-
pile interaction is more important for soft soils. Thus, greater differences are appreciated for
the soil type E and the superficial layers of the variable profile. Also, the pile-to-pile inter-
action effects can be observed at the maximum bending moments at pile head level for the
configurations with restricted rotation. As consequence of the interaction between piles, the
maximum bending moments obtained for the piles within the group are slightly smaller than
the ones corresponding to the single pile configurations, being this effect more important as
the number of piles increases or the separation distance decreases.

The influence of the position of the pile within the group is analysed through Fig. 4.26,
which presents the envelopes corresponding to the four different pile positions (due symme-
try) in the 3 × 3 group by using different line styles. It is found that the variations between
the different piles in the group are almost negligible, being observable only for the configu-
rations of large diameters in soft soils and specially at the pile head level. For this reason, the
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Figure 4.25: Influence of the group configuration on the pile envelope of maximum bending
moments. Hinged pile-cap union condition.

comparison for the hinged head configurations are not shown. Note that the results presented
in Fig. 4.23 correspond to the configuration with closest piles (𝑠/𝑑 = 2) and, therefore, with
larger pile-to-pile interaction effects.

In order to finish this study, Fig. 4.27 presents the envelopes of maximum bending mo-
ments for a large configuration based on one of the buildings studied in [124]. The pile group
is composed by a regular 13 × 4 distribution of piles with a separation 𝑠/𝑑 = 11. The pile
diameter and length values are assumed to be 0.5 m and 10 m, respectively. Also, the rest of
the pile material properties are considered to be equal to the ones used along this chapter.

Fig. 4.27 presents the envelopes obtained by assuming the two profile variations per soil
type. As the pile distribution is not symmetric, the two scenarios for which the incident field
acts parallel (label 13 × 4) or perpendicular (label 4 × 13) to the direction of alignment of the
13 piles are considered. The envelopes of all the piles of the group are plotted superimposed
by using the same line type (light colour) and are compared to the results of the corresponding
single pile (dark colour) configuration. It is verified that the results of the single pile accu-
rately estimate the envelopes of maximum bending moments of the piles in the large group.
Due to the large separation value, the interaction between piles is virtually negligible in this
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Figure 4.26: Influence of the pile position in the group on the envelope of maximum bending
moments. 3 × 3 pile group (𝑠/𝑑 = 2) with fixed pile-cap union condition.

configuration, being the only differences observable at the pile head moments.
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Figure 4.27: Envelopes of maximum bending moments for a large pile foundation.

4.8 Conclusions
In this chapter, the developed integral model is used for the analysis of the seismic response of
pile foundations. Special attention is given to the effects of considering the variability with
depth of the soil profile. For this purpose, variable profiles representative of different soil
types are compared with homogeneous half spaces that are equivalent in terms of the mean
shear wave velocity 𝑐𝑠,30. The main conclusions drawn from this study are:

• Regarding the translational kinematic interaction factors 𝐼𝑢, the pile foundation filters
to a great extent the soil seismic motion if the variable-with-depth profile is assumed.
However, as the excitation frequency increases, there can be some ranges for which the
opposite effect is found.

• On the contrary, the rotational kinematic interaction factors 𝐼𝜑 increase their values in
the low-frequency range if the variability of the soil profile is considered. In the high-
frequency range, the rotations obtained for the equivalent homogeneous profile tend to
be higher than those of the variable profile.

• These effects can be explained attending to the fact that the first layers of the variable
profile are softer with respect to the ones of its equivalent homogeneous soil. Note
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that all the non-homogeneous profiles considered in this study have zero shear wave
velocity at the free-surface level.

• Those differences between the two profiles in their kinematic interaction factors pro-
duce that higher elastic response spectra are obtained for the homogeneous profile in
the low period range (𝑇 < 0.15 s). Thus, for that range, the homogeneous assumption
is generally conservative in terms of the structural maximum accelerations.

• For larger structural periods, and specially in soft soils, the relevance of assuming the
correct soil profile becomes more important. Appreciable differences between studied
profiles are found for the whole range, being the highest pseudo-spectral accelerations
obtained when the variability of the soil profile is considered.

• The importance of including the soil variability further increases for those systems in
which the foundation rotation has a high contribution to the structural response (i.e.,
slender structures and foundations with few near piles). The differences between the
variable and homogeneous profiles can reach over 4 times the peak ground acceleration
in the case of single piles or up to one time for pile groups and the softest soil type.

The influence of the assumed pile head condition (pile-cap union type) on the seismic
motions of the pile foundations is also studied:

• Foundations with piles with hinged condition at their heads present higher translational
kinematic interaction factors 𝐼𝑢 than those with piles with restrained head rotations
(either externally imposed or due to the influence of the pile cap).

• Despite the differences in the filtering of the seismic lateral motion, the frequency be-
haviour and effects of the variability of the soil profile on the obtained curves is nearly
the same regardless the head condition, being the only difference a shift toward lower
frequencies for the fixed-head assumption.

• For pile groups, the cap rotation is significantly reduced by articulating the pile-cap
union. Under this condition, the pile rotation produced by the incident field is not
transmitted to the rigid cap.

• In terms of the structural response, the effects of the pile head condition depend on the
slenderness of the supported system.

• For short structures, foundations with hinged piles produce larger structural accelera-
tions than configurations with fixed-head piles. On the other hand, for slender struc-
tures, the articulation of the pile-cap union leads to a reduction in the structural kine-
matic response.

The pile response in terms of envelopes of maximum bending moments is also analysed:

• The use of single pile configurations for estimating the kinematic bending moments is
verified due to the small contribution of the interaction effects between piles.
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• Pile-to-pile interaction is only observable for very soft soils and configurations with
close piles. As consequence of this interaction, the maximum bending moments are
reduced for piles in a group.

• Regarding the influence of the variability of the soil profile, the envelopes of maximum
bending moments are highly sensitive to the assumed profile. The equivalent homoge-
neous profile in terms of mean shear wave velocity is not suitable for reproducing the
bending moments of piles in a variable profile under any scenario.

• For configurations of hinged-head piles, the envelopes obtained for the homogeneous
media significantly overtake the ones of the variable profiles. On the other hand, for
fixed-head pile foundations, and because of the low stiffness of the superficial layers
in the variable profile, the maximum bending moments produced at the pile head can
reach values over three times higher than the ones of the equivalent homogeneous soil
if the variability of the soil profile is considered in the analyses.

98 Integral model based on advanced fundamental solutions for the dynamic analysis of piles



5. Pile barriers as
ground vibration
mitigation measure

5.1 Introduction
5.2 Problem definition
5.3 Validation of the proposed

model
5.4 Results
5.5 Conclusions





PILE BARRIERS AS GROUND VIBRATION MITIGATION MEASURE

.

5

5.1 Introduction
The environmental vibration produced by nearby traffic, machines or construction operations
can lead to annoyance for residents or damage for sensitive equipment. Different types of
isolation systems can be used to attenuate these ground vibrations, located either at the source
point or at the receiver structure. In addition to these, wave barriers can be used along the
transmission path to reduce the propagation of vibrations in the ground.

Several types of wave barriers have been used and studied along the last decades. The sim-
plest system consists of an open or in-filled trench situated between the vibration source and
the receiver point. The surface disturbance imposed by the trench diffracts the elastic waves
resulting in a vibration amplitude reduction [125]. The efficiency of trenches is closely re-
lated to their depth and the soil wavelength [125–127] and, for open or in-filled, has been
the object of study of a large variety of research works through experimental [127–129] or
numerical [130–135] approaches. Depending on the dimensions of the trench or the charac-
teristics of the soil, sometimes it is necessary to include structural elements, such as thin shell
walls [39] or sheet-pile walls [136], to guarantee its stability. Systems composed by double
wall barriers have been also recently considered [137, 138]. Some of these works [135, 138]
have employed optimization techniques in order to improve the performance of the barriers.

On the other hand, wave barriers formed by piles can be also used to mitigate the ground
vibrations when large barrier depths are required. The pioneering experimental works of
Woods et al. [139] and Liao and Sangrey [140], and the analyses based on the equations of
the problem of Avilés and Sánchez-Sesma [141, 142] studied the use of piles as isolation
systems. Kattis et al. [143] used a BE formulation to analyse the performance of a row of
piles to mitigate the ground surface vibrations produced by an external vertical load. In a
later work, they addressed the problem by modelling the pile barrier through an effective
trench [144]. A BE model was also used by Tsai et al. [145] to study the effectiveness of
barriers formed by different types of hollow and solid piles. Regarding configurations that
differ from the single row of piles, Gao et al. [146] studied the performance of three pile
rows to mitigate Rayleigh waves; while Xia et al. [147] proposed a formulation to analysis
the scattering effects of an arbitrary configuration of piles. Also, periodic pile barriers have
been analysed in several research works [148–150]. Some authors have also addressed the
problem of pile barriers embedded in poroelastic soils [151–153].

At this point, it should be mentioned other novel systems that have been proposed recently
in order to mitigate the vibrations received by structures. One example is the application of
structure-soil-structure interaction effects [154, 155] to use an auxiliary system that absorbs
part of the energy transmitted through the ground. Also, different kinds of metabarriers or
metamaterials [156–162], some of them based on optical principles, can be used to prop-
erly channel or filter the elastic waves and, consequently, reduce the ground vibrations at the
desired locations.

In most of the previous works, the piles were assumed to be in a homogeneous half space.
More studies about how the profile of the soil affects the performance of the pile barrier
are demanded. In order to fill this gap, and to take advantage of the characteristics of the
developed model, in this chapter this problem is addressed.

This chapter is aimed at studying the performance of pile barriers as ground vibration
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mitigation measure, and how it is affected by the characteristics of the soil site. First, the
problem under study is defined in Section 5.2. Then, the ability of the integral model to
simulate the effects that are involved in the pile barrier problem is validated by comparing
with a boundary element model in Section 5.3. After setting the scope of applicability of the
numerical tool, results are presented in Section 5.4, followed by the main conclusions drawn
from them in Section 5.5.

5.2 Problem definition
The wave barrier is composed by a row (or several rows) of identical piles. A point load in
vertical direction, centrally placed at one side of the pile barrier, is assumed as the source
of vibrations. On the other side of the barrier, the response at a set of observation (receiver)
points distributed along a rectangular surface behind the barrier is measured. A sketch of the
problem is shown in Fig. 5.1.

Figure 5.1: Sketch of the pile barrier problem.

In order to present results that can be applied to a wide set of scenarios, the problem is
defined in terms of dimensionless parameters. The pile geometry is determined by the pile
aspect ratio 𝐿/𝑑; while the barrier geometry is given by the number of piles 𝑁 and centre-
to-centre pile separation 𝑠/𝑑. The width of the barrier is denoted as 𝑊 /𝑑 = (𝑁 − 1)(𝑠/𝑑).

The source is placed at the central line of the barrier at a distance 𝑟𝑠/𝑑 in the 𝑥 direction.
On the other hand, the position of each observation point is defined through the magnitudes
𝑥𝑜/𝑑 and 𝑦𝑜/𝑑, corresponding to the distances in directions 𝑥 and 𝑦, respectively, from the
observation point to the centre of the barrier.

This chapter aims to study how the performance of the pile barrier is affected by the
presence of a stiff bedrock at the soil site. Therefore, two soil profiles are assumed in order
to compare their results: a half space and a single soil layer over a bedrock. The relative
stiffness between the soil (half space or upper layer) and the pile is given by the pile-soil
Young’s modulus ratio 𝐸𝑝/𝐸𝑠. For the soil deposit profile, the thickness of the layer is given
by the ratio 𝐻/𝑑, and the relative stiffness between bedrock and the upper layer is determined
by the ratio 𝐸𝑏/𝐸𝑠. The rest of soil properties are set to be equal for the layer, bedrock and half
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space domains and are: soil-pile density ratio 𝜌𝑠/𝜌𝑝, soil Poisson’s ratio 𝜈𝑠 and soil hysteretic
damping ratio 𝛽𝑠, which gives complex valued elastic properties as: 𝐸∗ = Real[𝐸](1 + 2i𝛽𝑠),
being i the imaginary unit.

The rest of dimensionless material properties corresponding to the piles are: pile Pois-
son’s ratio 𝜈𝑝 and pile hysteretic damping ratio 𝛽𝑝.

Results are presented in terms of the dimensionless frequency 𝑎𝑜 = 𝑓𝑑/𝑐𝑠, being 𝑓 the
excitation frequency in hertz and 𝑐𝑠 the shear wave propagation velocity of the soil (half space
or upper layer). The dimensionless frequency represents the ratio between the pile diameter
and the shear wave wavelength in the soil, i.e., 𝑎𝑜 = 𝑑/𝜆𝑠.

The reduction of surface displacements produced by the pile barrier is measured in terms
of the amplitude reduction ratio:

𝐴𝑟 = |
𝑢

𝑢ref | (5.1)

where 𝑢 and 𝑢ref are the vertical displacements produced at each observation point by the
vertical load with or without the presence of the pile barrier, respectively.

Then, the effectiveness of the pile barrier is measured through the average amplitude
reduction factor in the observation surface, which is obtained as:

̄𝐴𝑟 = 1
𝐴 ∫𝐴

𝐴𝑟 d𝐴 (5.2)

being 𝐴 = 2(𝑊 /𝑑)2 the dimensionless area of the rectangular observation surface located
behind the pile barrier.

5.3 Validation of the proposed model
The aim of this section is to validate the capability of the developed model to handle the
pile barrier problem. The presence of the barrier mitigates the ground vibration due to the
stiffening of the soil between the receiver and the source points and due to the diffraction of
the travelling waves that transmit the energy introduced by the external force. Part of these
diffraction effects corresponds to geometrical reflections and transmissions that are produced
at the soil-pile interface. However, as the proposed formulation treats the piles as dimen-
sionless load lines, these phenomena cannot be completely captured by the developed model.
The importance of the geometrical diffraction is expected to increase as the frequency of
the excitation augments, when the soil wavelengths are comparable to the pile cross-section
dimensions.

Therefore, in order to test the range of applicability of the proposed model, a reduced set
of problems is considered and the results of the integral model are compared with the ones of
the previously developed boundary element formulation [16,41] within the Research Group.
As stated in the introduction, BE models are often used in the literature to rigorously handle
the pile barrier mitigation problem. However, this kind of models demands high computa-
tional resources (both in time and memory) and also presents, in their standard formulations,
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the uncertainties intrinsically related to the surface and pile meshing. Those inconveniences
are avoided by the proposed integral model, which makes it a suitable tool for carrying out
parametric analyses if the validation process is satisfactorily completed.

For the validation analysis, several configurations of pile barriers embedded in a homo-
geneous half space domain are considered by combining the following dimensionless param-
eters:

• pile aspect ratio 𝐿/𝑑 = 10 and 20

• pile separation distance 𝑠/𝑑 = 1.5, 2, 3, 4 and 5

• pile-soil Young’s modulus ratio 𝐸𝑝/𝐸𝑠 = 65 and 250

• soil Poisson’s ratio 𝜈𝑠 = 0.3 and 0.485

All other dimensionless parameters are kept constant: number of piles 𝑁 = 7, pile Poisson’s
ratio 𝜈𝑝 = 0.25, pile hysteretic damping ratio 𝛽𝑝 = 0%, soil hysteretic damping ratio 𝛽𝑠 =
2.5%, soil-pile density ratio 𝜌𝑠/𝜌𝑝 = 0.7. The source load is located at 𝑟𝑠/𝑑 = 10 and the
response at receivers situated at 𝑥𝑜/𝑑 = 6, 10, 15 and 20 and at 𝑦𝑜/𝑑 = 0 and 1.5𝑠/𝑑 from the
centre of the pile barrier are considered. Values of the amplitude reduction ratio 𝐴𝑟 at these
observation points are obtained for a frequency range from 𝑎𝑜 = 0 to 0.25.

It is important to highlight that the validation is made in terms of the amplitude reduction
ratio at specific points instead of using its average value along the whole observation surface.
This way, the ability of the proposed model to represent the physical behaviour of each point
of the soil surface (and not only the average trend) can be validated. Obviously, if the integral
model is able to reproduce the point-by-point response of the soil obtained by the BE model,
the average values computed by the two methodologies will also coincide.

For illustration purposes, Fig. 5.2 shows the meshes required for solving one of the studied
configurations by the BE and integral models. Note that, as the BE formulation exploits
the geometrical symmetry of the problem, only one-quarter of it is discretized. However,
this makes it necessary to divide the loading problem into its symmetric and antisymmetric
components. On the other hand, the integral model does not impose any symmetry conditions,
thus, the whole configuration is directly considered (as shown in Fig. 5.2).

The combination of the aforementioned parameters results in 320 curves of the evolution
of the 𝐴𝑟 with the dimensionless frequency that can be used to compare the two different
methodologies. In order to measure the discrepancies between the two models at any point
𝐱𝐨 = {𝑥𝑜/𝑑, 𝑦𝑜/𝑑, 0}T of the soil surface, the following frequency-dependent relative error is
defined:

Δ𝐴𝑟(𝑎𝑜, 𝐱𝐨) =
|
|
|
||

𝐴𝑟(𝑎𝑜, 𝐱𝐨) − 𝐴BE
𝑟 (𝑎𝑜, 𝐱𝐨)

max
𝑎𝑜

(𝐴BE
𝑟 (𝑎𝑜, 𝐱𝐨)) − min

𝑎𝑜
(𝐴BE

𝑟 (𝑎𝑜, 𝐱𝐨))

|
|
|
||

(5.3)

which represents the importance of the difference between the amplitude reduction ratio ob-
tained by the integral and BE models with respect to the range within which lies the reference
(BE) results. This definition of the relative difference is chosen over the classic relative error
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Figure 5.2: Examples of the meshes used for the BE (left) and integral (right) models.

in order to avoid excessive values at frequencies in which the reference value of 𝐴BE
𝑟 is close

to zero.
After computing the Pearson’s correlation coefficient (𝑅) between Δ𝐴𝑟 and the variable

dimensionless parameters, the only ones that are found to be significantly related to the dif-
ferences between the two models are the dimensionless frequency 𝑎𝑜 (𝑅 = 0.614) and the
separation distance 𝑠/𝑑 (𝑅 = −0.183). As expected, as the frequency increases and, con-
sequently, the soil wavelength decreases, the geometrical effects of the pile dimensions are
more important and, therefore, the simplified model cannot reproduce the results of the BE
formulation. Related to this, as the piles in the barrier are located at closer distances, the
quantity of soil situated in between the piles differs more from one model to another. Note
that, in the limit scenario of 𝑠/𝑑 = 1, the BE model would have no soil between the line
that connects the pile centres, while the integral formulation will consider the propagation
of waves through that soil medium. In other words, it is found that as the real problem (BE)
presents a geometry closer to the hypotheses of the integral model (one-dimensional load
lines, i.e., slender separated piles), the results of the two methodologies converge.

In order to represent the relation between Δ𝐴𝑟 and the aforementioned parameters, the dis-
tribution of the differences between the integral and BE model are presented for each separa-
tion distance and dimensionless frequency in Fig. 5.3 through box and whiskers diagrams. In
coherence with the correlation analysis, it is found that the mean values of the differences are
larger for the smallest pile separation distances, and that the magnitude of these differences
significantly increases with the frequency. Also, the results presented in Fig. 5.3 indicate
the high dispersion that exists for the differences between the models, which leaded to the
statistical treatment of the data instead of a direct evaluation from the graphical results.

Finally, in order to fix the range of applicability of the integral model, the expected dif-
ference Δ∗

𝐴𝑟
is obtained for each separation distance 𝑠/𝑑 through a linear regression of the

available data and is shown as a solid line in each graphical area of Fig. 5.3. The comparison
between the evolution with frequency of this expected difference for the different separation
distances can be easily analysed in Fig. 5.4(a). Once these expected differences are obtained,
the integral model is assumed to be valid if the expected value of the difference Δ∗

𝐴𝑟
remains
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Figure 5.3: Distribution of the differences Δ𝐴𝑟 between the integral and BE models.

below a certain threshold. For this study, a threshold value of 0.1 (ten percent of the 𝐴BE
𝑟

range) is assumed in order to accept the results of the integral model, yielding the maximum
values of the dimensionless frequencies 𝑎lim

𝑜 that can be reached for each separation distance
that are shown in Fig. 5.4(b). Note that a near-linear relation between the separation distance
𝑠/𝑑 and the maximum dimensionless frequency 𝑎lim

𝑜 is obtained. Therefore, it is assumed
that for separation distances larger than the ones studied herein, the maximum dimensionless
frequency of application of the integral model will be, at least, 𝑎lim

𝑜 = 0.15.
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Figure 5.4: Range of applicability of the integral model. (a): Expected difference Δ∗
𝐴𝑟

between the integral and BE models. (b): Maximum dimensionless frequency in which
Δ∗

𝐴𝑟
< 0.1 as function of the pile separation distance 𝑠/𝑑.

To illustrate the validation study, Fig. 5.5 shows the 𝐴𝑟 obtained by the integral (lines)
and the BE (crosses) models for the configurations of 𝐿/𝑑 = 20 and 𝜈𝑠 = 0.485 at certain
observation points. The results corresponding to the different pile separation distances are
shown in different rows, while the ones corresponding to the two soil stiffness ratios are
plotted in different colours. The observation points are located at the centre of the pile barrier
(𝑦𝑜/𝑑 = 0) and at a distance indicated by the value of 𝑥𝑜/𝑑 at the top of each column. In
addition to this, a vertical dashed line shows the value of the limit frequency according to the
results presented in this section. It can be seen that a good match between the two models is
obtained for low frequencies up to the 𝑎lim

𝑜 . Also, for configurations with large pile separation
distances, the integral model follows the main trend of the BE results for frequencies larger
than 𝑎lim

𝑜 , although their values do not perfectly coincide.
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Figure 5.5: Comparison between amplitude reduction ratios obtained by the integral and BE
models. 𝜈𝑠 = 0.485, 𝐿/𝑑 = 20. Observation points located at the centre of the barrier
(𝑦𝑜/𝑑 = 0).

Finally, in order to demonstrate that the scope of applicability of the model obtained from
the results of the half space profile are also valid for the layer over bedrock site, results for this
profile are presented in Fig. 5.6. The studied geometries and properties coincide with the ones
used for Fig. 5.5, but an infinitely rigid bedrock is placed at a depth equal to the pile length.
Fixed tip conditions are considered for the piles. The results show that the integral model can
also reproduce the results of the BE model up to the limit frequency value 𝑎lim

𝑜 for the bedrock
profile. As commented at the beginning of this section, the discrepancies between the models
are produced due to the lack of geometrical diffraction effects in the integral formulation and
these phenomena were expected to behave in a similar way regardless the existence of the
rigid bedrock.
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Figure 5.6: Comparison between amplitude reduction ratios obtained by the integral and BE
models. 𝜈𝑠 = 0.485, 𝐿/𝑑 = 20. Observation points located at the centre of the barrier
(𝑦𝑜/𝑑 = 0). Rigid bedrock located at the pile tip depth.

5.4 Results
As previously stated, the objective of the present chapter is to study how the performance of
the pile barrier is altered when it is embedded in a soil layer over a stiff bedrock. For that
purpose, the results corresponding to this profile (henceforth referred to as Bedrock profile)
are compared with the ones obtained by assuming the soil as an unbounded semi-infinite
medium (Half space profile).

Several cases of study are defined in order to analyse the effects of some of the dimen-
sionless parameters that define the problem. Table 5.1 presents each scenario together with
the values that are assumed for the different dimensionless parameters and contact conditions
at the pile tip-bedrock union. On the other hand, Table 5.2 shows the values for the rest of
the dimensionless properties that are kept constant along the different cases.

The study starts with Case A, which compares the vibration mitigation performance of
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Case 𝑁 (𝑠/𝑑) 𝐿/𝑑 𝐻/𝑑 𝑟𝑠/𝑑 𝐸𝑝/𝐸𝑠 𝐸𝑏/𝐸𝑠 tip condition†

A 7 (4) 5,10,20 20 24 100,250,500 ∞ free
B 7 (4) 10,20 𝐿/𝑑 24 250 ∞ free,hinged,fixed
C 7 (4) 10,20 𝐿/𝑑 0-6 (𝑟𝑠/𝜆𝑠) 250 ∞ fixed
D 7 (4) 10,20 𝐿/𝑑 24 250 1,2,5,10,∞ free
E 7 (4) 10,20 𝐿/𝑑 24 250 (Gibson) ∞ fixed
F †† 10,20 𝐿/𝑑 24 250 ∞ fixed

† only for the Bedrock scenario. Free tip is always assumed for half space profile.
†† single barrier configurations: 13(2),7(4),4(8); double barrier configurations: 6&7(4),3&4(8).

Table 5.1: Definition of the cases of study.

𝜌𝑝/𝜌𝑠 𝜈𝑠 𝛽𝑠 𝜈𝑝 𝛽𝑝 𝑎𝑜

0.7 0.485 2.5% 0.25 0.0% 0-0.15

Table 5.2: Dimensionless properties assumed for all of the cases of study.

pile barriers embedded in the soil layer over a rigid bedrock with the results obtained assum-
ing the half space profile. A constant layer thickness is considered together with three pile
aspect ratios for the elements of the barrier. Two of these aspect ratios correspond to piles that
are shorter than the layer thickness, while the last ratio corresponds to the situation in which
the piles reach the bedrock. For this case of study, the influence of the pile-soil stiffness ratio
on the obtained results is also analysed. It is found that only when the piles reach the rigid
bedrock a significant variation of the barrier reduction ratio is obtained with respect to the half
space scenario. After this finding, only configurations with piles presenting a length equal to
the layer thickness are further considered. The influence of the layer thickness on the barrier
behaviour is studied in Case B, together with the effects of changing the pile tip boundary
condition that represents the union between the piles and the rigid bedrock. Then, Case C
studies the influence of the position of the external source with respect to the barrier on its
performance, comparing the scenarios of the bedrock and half space soil profiles. In Cases
D and E, the academic assumption of the single homogeneous layer over an infinitely rigid
bedrock profile is generalized into two more realistic soil profiles: a homogeneous layer over-
lying a flexible bedrock (Case D), and a variable-with-depth soil layer over a rigid bedrock
(Case E). Finally, several barrier configurations are analysed in Case F by changing the pile
spacing or adding extra pile rows in order to confirm that the obtained results can be extrap-
olated to other dispositions of the piles in the barrier. In the following, detailed comments of
the different cases of study are presented.

First, Fig. 5.7 presents the average reduction ratio produced by the pile barrier as a func-
tion of the dimensionless frequency for the half space and bedrock profiles. Different pile
aspect ratios are considered for the piles of the barrier as indicated by the labels atop each
column. For the bedrock profile, a layer thickness 𝐻/𝑑 = 20 is assumed regardless of the pile
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Figure 5.7: Case A. Average amplitude reduction factor. Influence of the pile aspect ratio and
presence of a rigid bedrock. 𝐸𝑝/𝐸𝑠 = 250.

aspect ratio. The frequencies coinciding with the natural frequencies of the layer are marked
with vertical dashed lines (corresponding to 𝐻 = 𝑛𝜆𝑠/4 with 𝑛 = 1, 3, 5...). Two different
situations are found depending on whether or not the piles reach the rigid bedrock. When
the piles are shorter than the thickness of the soil layer, the average amplitude reduction ratio
obtained for the bedrock profile practically coincides with the one for the half space scenario,
showing a slight oscillation around it. For the studied frequency range, the barrier with the
shortest piles (𝐿/𝑑 = 5) produces virtually no reduction of the soil displacements; while the
one formed by piles with 𝐿/𝑑 = 10 only presents a small attenuation of the soil vibration for
high frequencies. For this last configuration in the bedrock profile, there is a frequency range
(𝑎0 = 0.04 − 0.08) in which the presence of the piles amplifies the average vertical displace-
ments at the points located behind the barrier. On the other hand, for the case of the piles
with a slenderness ratio equal to the layer thickness, a considerable change in the behaviour
of the barrier is found between the bedrock and half space profiles. For the single layer over
the rigid bedrock, the reduction of the pile barrier starts to increase from frequencies above
the fundamental frequency of the soil layer, reaching the maximum reduction, i.e. minimum

̄𝐴𝑟 value, around the second natural frequency of the soil layer (𝐻 = 3𝜆𝑠/4). For higher
frequencies, the barrier loses efficiency but continues to reduce the ground vibration at the
points behind it ( ̄𝐴𝑟 < 1). For the half space profile, the average amplitude reduction ratio of
the barrier smoothly reduces its value as the frequency increases, reaching a minimum around
𝑎𝑜 = 0.09, and then starts to lose efficiency for higher frequencies but at a lower rate than
the bedrock profile. Comparing the ̄𝐴𝑟 ratios of the two soil types, it can be found that the
largest reductions are produced for the bedrock site around its second natural frequency, but
for higher frequencies the barrier becomes less effective in this medium compared with the
half space scenario.

In order to explain why the performance of the pile barrier at high frequencies is reduced
to a larger extent in the bedrock profile than in the half space domain for the 𝐿/𝑑 = 20 piles,
Fig. 5.8 shows, for the two studied profiles, the absolute value of the vertical displacements
that the external force produces at certain observation points with and without considering
the presence of the pile barriers. These observation points are located at the central line of the
barrier (𝑦𝑜/𝑑 = 0) and at a distance of 1/8 (𝑥𝑜/𝑑 = 6), 1/4 (𝑥𝑜/𝑑 = 12) and 1/2 (𝑥𝑜/𝑑 = 24)
of the width of the observation surface (2𝑊 /𝑑). The results in terms of displacements show
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Figure 5.8: Case A. Vertical displacements and amplitude reduction ratio at specific observa-
tion points located at the central line (𝑦𝑜/𝑑 = 0) behind the barrier. Pile aspect ratio 𝐿/𝑑 = 20.
𝐸𝑝/𝐸𝑠 = 250.

the different behaviour corresponding to the two soil profiles: for the half space domain, the
displacements present an oscillatory but smooth behaviour with frequency, and the presence
of the barrier only scales their value. On the contrary, for the bedrock profile, the influence of
the frequency on the soil displacements is more important. Below the fundamental frequency
of the soil, the energy introduced by the external force cannot propagate through the layer so
the displacements at the points of the soil surface are limited. However, once this cut-off
frequency is reached, the displacements of the soil rapidly increase, reaching values that can
be three times greater than the ones produced at the half space site. For larger frequencies, a
highly frequency-dependent behaviour of the soil displacements is found. At these values of
𝑎𝑜, the presence of the pile barrier in the bedrock profile not only scale the value of the soil
displacements, but also slightly modifies their evolution with frequency, shifting the curves
toward higher frequencies. This shift is more evident for points more distant to the barrier:
e.g., the minimum displacement for the point at 𝑥𝑜/𝑑 = 6 is moved from 𝑎𝑜 = 0.065 to
𝑎𝑜 = 0.07 when the piles are included; but the shift of minimum value for 𝑥𝑜/𝑑 = 24 goes
from 𝑎𝑜 = 0.12 to 𝑎𝑜 = 0.14 if the barrier is present. These shifts in frequency between the
displacements with and without the barrier produce that, at high frequencies, the amplitude
reduction factors for the bedrock profile fluctuate from small to high values, as illustrated by
the bottom row of Fig. 5.8. Therefore, the average reduction produced by the barrier in the
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Figure 5.9: Case A. Average amplitude reduction ratio. Influence of the pile-soil stiffness
ratio.

bedrock profile loses efficiency for frequencies in which these shifts occur (𝑎𝑜 > 0.06 for the
studied configuration).

Fig. 5.9 shows the results for Case A that are obtained by assuming different values of
the pile-soil stiffness ratio. The initial value 𝐸𝑝/𝐸𝑠 = 250 was considered as representative
of concrete piles (𝐸𝑝 ≈ 30 MPa) embedded in a medium-soft soil (𝑐𝑠 = 150 m/s). However,
scenarios where the soil presents different properties or the piles are made by other materials
should also be considered, and are simulated by changing the value of the 𝐸𝑝/𝐸𝑠 ratio. The
obtained results show that the main behaviour of the barrier is the same regardless of the
pile-soil stiffness ratio. Furthermore, for configurations with 𝐿/𝑑 ≤ 10 the average reduction
ratios virtually coincide for 𝐸𝑝/𝐸𝑠 = 100 − 500. On the other hand, for the barrier with the
most slender piles, the higher the pile-soil stiffness ratio, the larger the attenuation produced
by the barrier. The influence of the 𝐸𝑝/𝐸𝑠 ratio increases at high frequencies for the half
space domain, while it is slightly more significant around the second fundamental frequency
for the bedrock profile.

From the results presented in Figs. 5.7 and 5.9 it can be concluded that the behaviour of
the pile barrier is only significantly altered by the presence of the rigid bedrock if the piles
reach it. For this reason, and in order to study the effects of the layer thickness, Fig. 5.10
compares the average amplitude reduction factor obtained for the half space profile with the
one obtained assuming a bedrock profile in which the layer thickness coincides with the pile
aspect ratio. The configuration with short piles 𝐿/𝑑 = 5 is omitted as it would imply unre-
alistic short layers for typical pile dimensions. Note that, as the layer thickness changes, the
natural frequencies of the soil profile (indicated by the vertical dashed lines) do not coincide
in terms of 𝑎𝑜 for the cases of 𝐿/𝑑 = 10 and 20. Also, for the bedrock profile, different
pile-bedrock union conditions are assumed in order to check their influence upon the barrier
reduction ratios. Free, hinged, and fixed tip conditions are considered. However, the im-
portance of the pile tip condition is found to be negligible. The results for free and hinged
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Figure 5.10: Case B. Average amplitude reduction ratio. Influence of the layer thickness and
pile tip boundary condition.

tips practically coincide, while the differences between these and the fixed condition only
can be seen for low frequencies, especially for the shortest piles. If the rotation of the pile
tip is perfectly restrained by the rigid bedrock, a local minimum of the amplitude reduction
factor is obtained at the layer fundamental frequency as the pile deformation shape for the
fixed tip condition is not compatible to the layer fundamental mode. However, this effect is
not really important as for the bedrock profile the displacements on the surface produced by
the external force are quite small at these frequencies, as shown in Fig. 5.8. Regarding the
influence of the layer thickness, the same trend can be seen for the two studied configura-
tions: the maximum reduction takes place around the second fundamental frequency of the
soil layer, and the value of the ̄𝐴𝑟 ratio increases for larger excitation frequencies. However, it
is important to highlight that, in the studied range, the difference in the minimum value of the
average reduction factor depending on the soil profile is higher for the shortest piles: which
goes from ̄𝐴𝑟 = 0.8 for the half space to ̄𝐴𝑟 = 0.4 for the bedrock profile (for the 𝐿/𝑑 = 20
configuration, these minimum values are 0.55 and 0.3 respectively).

Regarding the influence of the position of the external source upon the barrier perfor-
mance, Fig. 5.11 presents the average amplitude reduction ratio for the half space and bedrock
profiles as functions of this parameter. Note that the distance of the source with respect to
the barrier is presented in terms of 𝑟𝑠/𝜆𝑠 instead of 𝑟𝑠/𝑑 in order to obtain similar trends for
the three studied frequencies. These frequencies correspond to the second and third natural
frequencies of the soil layer, plus the intermediate value. The point marker indicates the re-
sults corresponding to the default value (𝑟𝑠/𝑑 = 24) assumed in the rest of cases of study.
Two different behaviours are found depending on the soil profile. For the half space, great
reductions are obtained when the load is placed near the barrier (𝑟𝑠/𝜆𝑠 < 1). For larger sepa-
rations, the average attenuation ratio of the barrier increases up to a limit value which remains
constant regardless the source separation distance. On the contrary, for the bedrock profile,
the efficiency of the pile barrier is maintained for all of the studied positions of the external
load. The pile effectiveness oscillates depending on 𝑟𝑠/𝜆𝑠, but does not decrease as the source
moves away from the barrier. For 𝐻/𝜆𝑠 = 5/4 these effects produce that, depending on the
position of the source, the efficiency of the pile barrier can be larger in the half space domain
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Figure 5.11: Case C. Average amplitude reduction ratio. Influence of the position of the
source.

(close loads) or in the bedrock site (distant loads). The two different behaviours of the aver-
age reduction ratio depending on the position of the source can be explained considering the
different ways in which the energy is transmitted inside the two studied soil media. In the case
of the bedrock profile, the propagation of the energy is channelled through the soft layer. On
the other hand, for the half space domain, part of the energy introduced by the external load
is transmitted through surface waves and the rest is radiated to the unbounded media. In this
case, as the source moves away from the barrier, only the portion of the motion transmitted
through the surface waves reaches the barrier and, therefore, can be attenuated.
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Figure 5.12: Case D. Average amplitude reduction ratio. Influence of the flexibility of the
bedrock.
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In the previous analyses, the case of an infinitely rigid bedrock has been considered. How-
ever, in reality, the lower medium presents a finite flexibility. To study the influence of the
stiffness of the bedrock upon the barrier performance, Fig. 5.12 presents the average ampli-
tude reduction ratios obtained by assuming different 𝐸𝑏/𝐸𝑠 values. Free-tip conditions are
assumed for all of the soil profiles. The obtained results show that the largest reductions are
still found for the rigid bedrock case. However, appreciable differences with respect to the
half space profile (𝐸𝑏/𝐸𝑠 = 1) can be seen for the rest of the studied two-layered media.
When the lower layer is assumed to be flexible, the minimum value of the average reduction
ratio is shifted from the second natural frequency of the soil towards the frequency in which
𝐻 = 𝜆𝑠/2. After this minimum point, the ̄𝐴𝑟 of all layer profiles increases, reaching values
above the one corresponding to the half space scenario, as well as above the infinitely rigid
bedrock profile. For the 𝐿/𝑑 = 20 configuration, the values of the attenuation ratios produced
in the flexible bedrock profiles are again reduced at high frequencies, obtaining greater bar-
rier efficiencies than for the rigid bedrock scenario. This improvement takes place at lower
frequencies as the 𝐸𝑏/𝐸𝑠 ratio decreases.
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Figure 5.13: Case E. Average amplitude reduction ratio. Influence of the profile of the soil
layer.

On the other hand, actual soil profiles can present properties that continuously vary with
depth. Normally, the shear wave velocity increases for higher depths due to the soil consol-
idation process. In order to check how the assumption of a variable profile for the soft layer
changes the obtained results, Fig. 5.13 presents the average amplitude attenuation ratio for
three different scenarios. First, the previous case of a homogeneous layer over an infinitely
rigid bedrock is considered. Then, two profiles in which the soil Young’s modulus linearly
increases with depth (Gibson soil) are assumed. These profiles are determined by the value
of the Young’s modulus at the free-surface level (either 0.5𝐸𝑠 or 0.25𝐸𝑠), and are defined in
order to present the same average 𝐸𝑝/𝐸𝑠 ratio along the pile length than the homogeneous
layer:

{
0.25𝐸𝑠 ∶ 𝐸𝑠(𝑧) = [0.25 + 1.75(𝑧/𝐿)] (𝐸𝑝/250)

0.5𝐸𝑠 ∶ 𝐸𝑠(𝑧) = [0.5 + 1.5(𝑧/𝐿)] (𝐸𝑝/250)
(5.4)

Instituto Universitario SIANI 115



5
.

PILE BARRIERS AS GROUND VIBRATION MITIGATION MEASURE

The shear wave velocity used to compute the dimensionless frequency is the one that corre-
sponds to the average value of 𝐸𝑠 = 𝐸𝑝/250. Note that the rest of soil parameters (𝜌𝑠, 𝜈𝑠,
𝛽𝑠) are kept the same for the whole profile. It is found that, despite increasing the frequency
variability of the average amplitude reduction ratio, the two variable profiles follow the main
trend obtained for the homogeneous layer.

Figure 5.14: Pile barrier configurations analysed in Case F.
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Figure 5.15: Case F. Average amplitude reduction ratio. Influence of the pile separation and
pile disposition.

Finally, in order to check if the previous results can be extrapolated to other pile barrier
configurations, the pile dispositions presented in Fig. 5.14 are considered. The same barrier
width is kept for all of the configurations to preserve the same observation surface. Thus, the
pile separation is changed by introducing or removing some piles. Also, two configurations
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formed by a double pile barrier are considered. In those configurations, labelled as double,
the 𝑠/𝑑 ratio represents the distance between the projections over the 𝑦 axis of two consec-
utive piles, and a fixed separation between the two rows 𝑠𝑥/𝑑 = 2 is assumed. The average
amplitude reduction ratios for the half space and bedrock profiles for these configurations are
presented in Fig. 5.15. As expected, the closer the piles, the larger the reduction produced by
the barrier. This decrement in the ̄𝐴𝑟 is found from medium-high frequencies (𝑎𝑜 > 0.05) for
the half space profile, and above the fundamental frequency of the soil layer for the bedrock
site. For the latter soil type, the importance of the pile separation is the same regardless the
pile aspect ratio; while for the half space domain the magnitude of the influence of the 𝑠/𝑑
ratio is significantly higher for slender piles. Regarding the configurations with double pile
rows, their results coincide with the ones of the line configurations with the same 𝑠/𝑑 for
𝑎𝑜 < 0.05. For higher frequencies, different behaviours are found depending on the problem:
For the half space profile, larger reductions are obtained if the piles are distributed into two
rows for the configurations 𝑠/𝑑 = 2, but the opposite effect is seen for the 𝑠/𝑑 = 4 barriers. On
the other hand, for the bedrock profile the barriers in which the piles are aligned present al-
ways higher efficiencies than the corresponding configurations with two rows. Despite these
differences, it can be concluded that the main trends of the average amplitude reduction ratios
for the half space and bedrock profile are kept for all of the studied pile configurations.

5.5 Conclusions
In this chapter, the performance of a pile barrier as ground vibration mitigation measure is
analysed. The range of validity of the integral model to handle the wave propagation prob-
lem of the pile barrier is tested against a boundary element formulation. After the validation
process, the proposed tool is used in order to study how the efficiency of the pile barrier,
measured in terms of the average amplitude reduction ratio, changes depending on the con-
sidered soil profile. For this purpose, the results for the half space are compared to the ones of
a single layer over a rigid bedrock profile. The main conclusions obtained from the analyses
are:

• Appreciable differences are found between the half space and bedrock profiles only
if the piles reach the rigid stratum. Otherwise, the results of the bedrock site closely
oscillate around the ones of the half space domain. For the configurations in which
the piles get to the rigid bedrock, the influence of the pile-bedrock union condition is
almost negligible.

• The highest reduction due to the presence of the barrier in the bedrock profile is pro-
duced at the second natural frequency of the soil layer (𝐻 = 3𝜆𝑠/4). For higher frequen-
cies, a decrement in the barrier efficiency is produced due to the shifts in the frequency
curves of the soil displacements with and without the barrier.

• The performance of the pile barrier in the half space is highly reduced if the excitation
load is placed at a distance 𝑟𝑠/𝜆𝑠 > 1 from the pile barrier. On the contrary, the average
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amplitude reduction produced by the barrier in the bedrock profile oscillates around
the same mean value regardless the position of the source.

• The effects of the presence of the infinitely rigid bedrock are attenuated if the actual
flexibility of the stiffer layer is considered. However, the trend in the barrier perfor-
mance is maintained for the flexible bedrock profiles. Also, considering the variability-
with-depth of the properties of the upper layer does not alter the main effects produced
by the presence of the rigid bedrock.

• Pile barrier configurations with closer piles produce, as expected, larger attenuations of
the vertical ground motion. The influence of the pile spacing is higher for the bedrock
profile or for configurations with slender piles embedded in a half space domain. Re-
garding the pile disposition, a better performance of the pile barrier in the bedrock
profile is obtained if the piles are distributed along one single row.
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6.1 Introduction
In the last years, the use of Offshore Wind Turbines (OWT) has experienced a great increment
owing to the reduction in cost and the increase in the generators size and power. However,
further research is demanded in order to better understand the dynamic behaviour of their
supporting structure and so that design and lifespan can be improved.

The principal foundation type for OWTs is the monopile (81% of the OWT installed in
Europe are founded on monopiles according to WindEurope [163]). Monopile foundations
consist of a short hollow pile with large diameter that is driven into the seabed, and are com-
monly used for water depths of 20-40 meters. The simplicity of the construction and assembly
is the principal advantage of this foundation type. However, the pile is a very slender struc-
ture and, consequently, more flexible than other foundation configurations (e.g. gravity based
or jackets). The soil-structure interaction (SSI) effects have to be carefully considered when
studying the dynamical behaviour of the OWT, being these effects highly dependent of the
foundation typology used.

One of the principal effects of the SSI is the change of dynamic properties, i.e. fundamen-
tal frequency and damping, of the foundation-structure system with respect to the fixed-base
structure. The variation in the eigenfrequency has to be carefully considered when design-
ing the OWT structure in order to avoid resonance with the excitation frequencies and the
corresponding increase in fatigue damage. Besides the wind and wave loads that present a
frequency content below 0.1 Hz, the principal frequencies to avoid are the rotor frequency
(1P) and the blade-passing frequency (3P or 2P depending on the number of blades). The
first corresponds to rotor or aerodynamic unbalance loads, while the latter is produced by
the shadowing effect from the wind of the blades passing the tower. The DNV [164] rec-
ommendation is to keep the tower frequency outside the ±10% range of these frequencies.
Additionally, depending on the relation between the tower fundamental frequency and the
aforementioned frequencies, three classical designs are distinguished [165, 166]: soft-soft if
the tower frequency is below the 1P, soft-stiff if it is between 1P and 3P, and stiff-stiff when
the structural eigenfrequency is higher than 3P. The soft-soft design is usually avoided as it
corresponds to very flexible structures and shows the eigenfrequency near to the wind and
wave loads. On the other hand, the stiff-stiff design is not a common choice owing to the high
material requirements in order to reach the desired frequencies. Thus, the soft-stiff design is
the one that is usually adopted. This design causes the OWT natural frequency to be within
a very narrow range, highlighting the importance of an accurate estimation. The dynamic
characterization, i.e. computation of the modified fundamental frequency and damping, of
OWT structures including the SSI effects has been the object of study for numerous recent
works [167–187].

In his early work, Zaaijer [167] compared different methodologies used to estimate the
structural fundamental frequency taking into account the soil effects. A Finite Element Method
(FEM) model including the American Petroleum Institute (API) p-y, t-z, Q-z curves was taken
as reference method and different foundation systems, such as monopiles, gravity footings and
jackets, were assumed. The best results were obtained by using impedance matrices, as iner-
tia effects in the foundation and non-linear soil-structure interaction were negligible. Thus,
stiffness matrix models are applicable for pile foundations under loading conditions relevant
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for the fatigue analysis. The obtained numerical results were compared with measures from
two wind farms, resulting in acceptable predictions of the fundamental frequencies. How-
ever, Zaaijer found that, as known from offshore practice, the models tend to underpredict
the foundation stiffness and, therefore, the system fundamental frequency. In the same work,
Zaaijer also studied the sensitivity of the system fundamental frequency to variations in differ-
ent parameters of soil, structure, foundation and environment, obtaining that soil parameters
dominate the uncertainty of the natural frequency. The effect of the uncertainties in the soil
profile was also studied by Carswell et al. [172] through probabilistic methods focusing on
the Serviceability Limit State (SLS). They concluded that the system reliability shows the
same sensibility to load as to soil uncertainty.

Adhikari and Bhattacharya [168] enhanced the Bernoulli model developed by Tempel and
Molenaar [188] in order to include the effects of a flexible foundation and the tower axial load.
The pile foundation was represented by two frequency-independent springs simulating the lat-
eral and rotational stiffness. They illustrated the analytical results with numerical examples
and applied their model to real turbines. Later Bhattacharya and Adhikari [173] evaluated the
lateral and rotational foundation stiffness by direct measurement and compared their results
with those obtained from a small-scale prototype and from a FEM model. They observed that
analytical and FEM results overestimated, in general, the system natural frequency. More re-
cently, Arany et al. [169] further developed their model by including the cross-coupling term
in the foundation stiffness and using the Timoshenko theory to model the tower. They con-
cluded that the cross-coupling spring term has a significant effect on the natural frequency,
while the Timoshenko beam model does not significantly improve the results, being the slen-
der beam assumption accurate enough. The effect of including the cross-coupling term was
also studied by Zania [174]. She presented an analytical iterative method to obtain the equiv-
alent modified period and damping due to SSI effects based on the pile impedance functions
from Novak and Nogami [189]. She concluded that disregarding the off-diagonal terms and
the frequency dependency of the impedance matrix is inappropriate, since it results in a non-
conservative overestimation of the fundamental frequency and underestimation of damping.
This effect was more evident as the height of the system increases. This conclusion might
explain why Bhattacharya and Adhikari [173] find that natural frequencies tend to be overes-
timated, disagreeing with what was previously exposed by Zaaijer [167].

One of the drawbacks of using the impedance functions is that they are intrinsically
defined in the frequency-domain. Implementation into time-domain models allowing non-
linear analysis can be done by adopting methodologies such as lumped-parameter models
(LPM) [190], as done by Damgaard et al. [175, 176]. They developed different LPM to rep-
resent the impedance functions of gravity [175] and monopile [176] foundations and imple-
mented such models in the aeroelastic code HAWC2. By studying the reference NREL 5MW
OWT [191], they concluded that the side-side response is more affected by the SSI than the
fore-aft vibration for gravity foundations; and that the SSI effects are critical in the design of
OWT on monopiles as they have a great impact on the fatigue damage equivalent moment at
seabed. Their LPM was used in a later work [177] to study the effect of changes in the soil
properties on the system fundamental frequency, damping and fatigue loads in parked condi-
tions. The changes of soil stiffness, soil damping and the presence of sediment transportation
at seabed were shown to be critical.
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Bisoi and Haldar [170] made use of the p-y curves to represent the soil-pile interaction in
a FEM model that included wind and wave loads. They compared three soil profiles (homoge-
neous, linear and parabolic) obtaining that the natural frequency marginally changes between
them. The three profiles presented the same properties at a depth equal to the pile diame-
ter. They also found that the effect of soil non-linearity increases for higher wind speeds.
Damgaard et al. [178] obtained the OWT fundamental frequency and damping by using both
experimental data from rotor-stop tests and a Winkler approach based on the p-y curves. The
Winkler approach together with a hysteresis loop method reasonably estimated the modal soil
material damping.

Bhattacharya et al. [179] carried out small scale tests of OWT founded on monopiles
and tripods. They illustrated that the natural frequency of the overall system shifts with the
number of cycles of loading due to the softening or stiffening of the foundation. Lombardi et
al. [171] further studied this relation for monopiles on clay soils, obtaining that the fundamen-
tal frequency decreases while the damping increases with the number of cycles of repeated
loading. The drop in the natural frequency is higher when the forcing frequency is close to
the system natural frequency.

Damgaard et al. [180] studied the influence of the water pore pressure on the estimation
of the tower fundamental frequency by combining a Kelvin and a bi-dimensional FEM mod-
els. They compared the numerical results with experimental free-vibration tests, obtaining
a better agreement when the permeability of the soil was considered. Yu et al. [181] also
investigated the effect of the presence of water in the soil on the dynamic behaviour of OWT
founded on monopiles and gravity foundations by executing earthquake centrifuge tests. They
demonstrated that the SSI plays a significant role in the seismic behaviour of OWT, affect-
ing the structural settlement, foundation response and fundamental frequency of the system.
They remarked the difficulty of the observation and analysis, especially if soil liquefaction is
produced.

Bisoi and Haldar [182] addressed the optimization of the structural mass for 2 and 5 MW
OWT founded on monopiles in clay. The SLS, fatigue life and resonance avoidance crite-
ria were checked and p-y curves were used to model the soil-pile interaction. They found
that the rotor and nacelle mass and the tower height play a crucial role on design, while the
embedded depth of the monopile beyond the critical length has a marginal impact. Myers
et al. [183] analysed when the strength (resistance in operational and extreme conditions) or
stiffness (resonance avoidance) criteria govern the design of monopiles for OWT, and pre-
sented optimum pile sections that satisfied these demands. If a fixed base was assumed, the
strength criterion controlled the design; but when the soil flexibility was included, the stiff-
ness criterion became important in two of the three studied sites, corresponding to deeper
water depths.

Despite most of the studies focus on the tower lateral vibrations, there are several works
related to other vibration modes. Kjørlaug and Kaynia [184] studied the vertical seismic
response of the NREL 5MW OWT, showing that the tower could amplify up to two times
the vertical accelerations at the seabed. On the other hand, Tibaldi et al. [185] showed that,
in addition to the structural modes, the blade and additional aeroelastic modes can play a
significant role in the structural response during operational conditions.

An interesting associated phenomenon is highlighted, for instance, by Hu et al. [186], who
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showed the tendency of the system to easily get stuck in resonance, exposing the necessity
of a good estimation of the system fundamental frequency in generators with variable rotor
speed.

In this chapter, the dynamic characterization of structures for offshore wind turbines
founded on monopiles is addressed through a simplified substructuring procedure based on
modal parameters. The problem under study is defined in Section 6.2, where data of real
OWT structures and typical soil profiles are used as starting points. Then, the proposed sub-
structuring approach is detailed in Section 6.3. In Section 6.4 the modal properties of the
considered structures are further analysed in order to obtain characteristic trends representa-
tive of this type of systems. Section 6.5 presents different parametric analyses that reflect the
influence of several properties, such as the soil profile or the dimensions of the monopile, on
the dynamic characteristics of the OWT structures. Finally, Section 6.6 summarizes the main
conclusions obtained from the previous results.

6.2 Problem definition
As mentioned before, this chapter addresses the dynamic characterization of OWT structures
founded on monopiles. The system is assumed to be composed by a conical hollow tower,
rotor and generator nacelle located at the tower top, and a monopile acting as foundation
(see Fig. 6.1). The tower is connected to the monopile through a transition piece, which is
a cylindrical hollow beam presenting some working platforms that give access to the OWT
structure for maintenance or repair activities. The monopile is assumed to be a cylindrical
hollow beam that is driven into the seabed and that is composed by two different parts: the
above-soil portion and the embedded portion, both presenting the same cross-section. The
tower and pile are assumed to be made of the same material.

The system geometrical and material properties are: tower length 𝐻𝑡, tower top and bot-
tom external diameters 𝐷top and 𝐷bot, ratio between the tower cross-section inner and outer
diameters 𝛿𝑡 (henceforth, thickness ratio), mass of the blades and generator nacelle 𝑀𝑅𝑁𝐴,
above-soil pile length 𝐻𝑝, pile embedded length 𝐿𝑝, pile external diameter 𝐷𝑝, pile thickness
ratio 𝛿𝑝, Young’s modulus 𝐸 and density 𝜌. Owing to the small aspect ratios that the embed-
ded pile can present in this type of constructions, the Timoshenko’s beam theory is used to
model it. Thus, additional geometrical and material properties are required for the embedded
pile: Poisson’s ratio 𝜈𝑝, shear coefficient 𝛼, and material hysteretic damping ratio 𝜉𝑝.

Finally, the problem is completely defined by knowing the water depth 𝐻𝑤 and density
𝜌𝑤, and the soil profile. The soil profile is defined by the shear wave velocity 𝑐𝑠, which
can change depending on the depth; and the soil Poisson’s ratio 𝜈𝑠, soil density 𝜌𝑠, and soil
hysteretic damping ratio 𝜉𝑠, which are assumed to keep the same value for the whole profile.

The OWT system can be divided into two different parts: the superstructure (above soil)
and foundation (under soil). By considering an infinite rigid base, the superstructure dy-
namic behaviour can be easily characterized by its fundamental frequency 𝑓𝑛 and damping
ratio 𝜉. However, if the foundation flexibility is included in the analysis, the SSI effects pro-
duce a reduction in the system fundamental frequency and changes in the damping ratio. The
aims of this chapter are computing these changes by obtaining the flexible-base fundamen-
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Figure 6.1: Representation of a generic OWT and identification of geometrical and material
parameters.

tal frequency ̃𝑓𝑛 and equivalent damping ratio ̃𝜉, and studying how the superstructure, the
foundation and the soil profile characteristics affect them.

Set of existent OWTs taken as starting point

In order to define the properties of the OWT structures, different systems that can be found
in the literature are taken as reference data. Their properties and details are presented in Table
6.1. OWTs 1-12 were extracted from the work of Lombardi [192], and correspond to wind
turbines from different wind farms already built in the UK. For each farm, a range of hub
heights was indicated, so the maximum and minimum values are considered. Only informa-
tion about diameters and thickness of the Vestas towers was available, so these dimensions
are assumed for the Siemens towers too. On the other hand, OWTs 13 and 14 correspond to
systems that have been widely studied in different works, e.g. [168–171]. Thus, more detailed
information about them was accessible.

However, for the selected cases, there are very few details available about the dimensions
of the transition piece and the length of the pile outside the seabed. For this reason, the
transition from pile to tower is assumed to be produced at water level, so the pile length is
equal to the water depth (𝐻𝑝 = 𝐻𝑤). On the other hand, some structures present a constant
wall thickness, while others have a thickness that varies along the height. In order to define
all the studied OWT systems in a coherent way, the thickness ratio is kept constant for the
whole length of the tower. By doing so, thicker walls are presented at the tower base, where
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Figure 6.2: Soil profiles used in the study. Evolution of the shear wave velocity with depth.

the largest diameter is located. The values of 𝛿𝑡 presented in Table 6.1 are obtained as the
mean value of the ones corresponding to the tower top and bottom sections.

For all the structures, the towers and piles are assumed to be made of steel. Thus, a
Young’s modulus 𝐸 = 210 GPa, a Poisson’s ratio 𝜈𝑝 = 0.25 and a density 𝜌 = 7850 kg/m3

are assumed. In addition, for the embedded piles, the hysteretic damping coefficient is set to
𝜉𝑝 = 2% and the shear coefficient of a hollow circular cross-section 𝛼 = 0.5 is used. For the
water density, 𝜌𝑤 = 1000 kg/m3 is considered.

Soil profiles

The soil profiles assumed for the sites in the analyses are presented in terms of the shear
wave velocity 𝑐𝑠 in Fig. 6.2. The value of the average shear wave velocity [68], 𝑐𝑠,30, for each
profile is also displayed above each plot as it is widely used to characterize the soil. Following
the Eurocode 8 [68] nomenclature, the selected profiles corresponds to C (180 < 𝑐𝑠,30 < 360
m/s) or D soil types ( 𝑐𝑠,30 < 180 m/s) which are the ones where OWT systems are usually
founded on.

The principal profiles are two typical boreholes (Nelson Field and Hutton TLP) of the
North Sea (see [193]) which consist of different layers of clay and sand. The values of the
shear wave velocity depend on the soil material and depth, and are estimated through Eq.
(6.1), proposed by Ohta and Goto [194] and where 𝑃 = 1.000, 1.260 or 1.286 for clay, fine
sand and medium sand, respectively.

𝑐𝑠 = 78.98 𝑧0.312 𝑃 [m/s] (6.1)

Additionally, two soils formed only by clay or medium sand are studied as limit scenarios.
Finally, two homogeneous and two variable profiles with identical values of 𝑐𝑠,30 = 180 and
360 m/s are selected in order to present results for a wider range of soils and being able
to analyse the effects of the soil non-homogeneity. These variable profiles follow the same
evolution with depth as the one presented in Eq. (6.1).
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As depicted in Fig. 6.2, the studied profiles are discretized by piece-wise homogeneous
layers of 1 m thickness as requirement of the Green’s functions used by the proposed model.
For depths greater than 80 m, the shear velocity is assumed to be constant with depth (half
space domain). These values are obtained after a convergence study. The rest of the soil prop-
erties are kept constant for the whole profile and are: soil density 𝜌𝑠 = 1800 kg/m3, Poisson’s
ratio 𝜈𝑠 = 0.35 and hysteretic damping ratio 𝜉𝑠 = 5%. In addition to this, the influence of
the soil Poisson’s ratio on the obtained results is also analysed by assuming different values,
going from 𝜈𝑠 = 0.35 to 𝜈𝑠 = 0.49.

6.3 Reduced substructuring methodology
The dynamic characterization of the OWT-monopile system is handled through a three-step
substructuring methodology. Following this procedure, one obtains a simplified model that
eases the study of the variation of the fundamental frequency and damping due to the foun-
dation stiffness. Fig. 6.3 sketches out the three steps of the proposed substructuring method-
ology: First of all, the fixed-base superstructure system is reduced to a single-degree-of-
freedom system in terms of its shear effective modal mass and height (b). Then, the founda-
tion stiffness is modelled through the corresponding impedance functions (c). Finally, both
parts are coupled together into a three degrees-of-freedom substructuring model (d). In the
following sections, each step is further detailed.

6.3.1 Foundation modelling
The foundation stiffness is represented by a set of impedance functions (𝐾𝑖𝑗) which relates
the force (moment) in direction 𝑖 with the displacement (rotation) in direction 𝑗. As studied in

Figure 6.3: Stages of the substructuring methodology. (a): System real geometry. (b): Super-
structure representation through modal parameters. (c): Foundation stiffness representation
through impedance functions. (d): Simplified substructuring model.
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Chapter 3, the impedance functions are frequency-dependent and complex-valued, with real
and imaginary terms representing the stiffness and damping components, respectively. As
the lateral response of the structure is studied, only the horizontal 𝐾𝐻𝐻 (𝜔), rocking 𝐾𝑅𝑅(𝜔),
and coupled horizontal-rocking 𝐾𝐻𝑅(𝜔), impedances are considered (Fig. 6.3c).

The developed integral model is used for the computation of the different impedance
functions that are needed along this chapter. Due to the high number of combinations of soil
profiles and monopile geometries considered in the analyses, and because in Chapter 3 the
effects of the soil variability on the impedance functions of pile foundations are thoroughly
studied, no results in terms of impedance functions are presented in this chapter.

6.3.2 FE model for the dynamic characterization of the superstructure
on fixed base

The application of the simplified three-step procedure implies the need of defining effec-
tive masses and heights for every configuration. These are often obtained through explicit
expressions derived for simplified geometries. In the present case, the realistic geometrical
properties assumed herein for the problem under study do not allow following the same strat-
egy. For this reason, the mass and height that will be used below for the characterization of
the superstructure are obtained through a modal analysis based on a finite elements repre-
sentation of the system, which will also allow the assumption of different properties for each
structural section. At this step, fixed-base conditions will be assumed.

The superstructure, composed by the conical tower and the above-soil portion of the slen-
der pile, is modelled as Bernoulli beams. For this type of structures, differences with respect
to a more elaborated Timoshenko theory are negligible [169]. Constant-section two-noded
four-degrees-of-freedom Hermitian beam elements are used for the discretization of both the
cylindrical (pile) and conical (tower) lengths. A high enough number of elements, set by
proper convergence studies, is used to correctly represent the conical tower stiffness.

The generator and rotor masses are added as a punctual mass at the tower tip node. The
hydrodynamic water added mass plus the mass of the internal water are also considered
for the submerged elements. This additional mass is included by using a modified density

̄𝜌 = 𝜌 + 𝜌𝑤(𝐶𝑚 + 𝛿2)/(1 − 𝛿2) for the computation of the translational mass matrix of the
submerged beam elements. An added mass coefficient 𝐶𝑚 = 1 is assumed in this study.
This consideration, despite significantly increasing the system total mass, does not affect the
obtained results for the fundamental mode of vibration, as observed by Zania [174].

Considering harmonic displacements and forces, the fundamental frequency and its modal
shape are obtained by solving the eigenvalues problem:

|K − 𝜔2M| = 0 (6.2)

where K and M are the superstructure stiffness and mass matrices obtained by the assem-
bly of the elemental ones. As this equation is used to obtain the system modes of vibration,
no damping is considered.

The fundamental frequency 𝜔𝑛 = 2𝜋𝑓𝑛 and its modal shape 𝜙𝑛 are obtained as the small-
est eigenvalue (frequency) and its eigenvector (shape). Once the modal shape is known, the
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base shear effective modal mass 𝑀∗ and height 𝐻∗ of the system to a base acceleration
excitation can be obtained through, e.g. [67]:

𝑀∗ = (𝜙𝑇
𝑛 M𝜄)2

𝜙𝑇
𝑛 M𝜙𝑛

; 𝐻∗ = h𝑇M𝜙𝑛
𝜙𝑇

𝑛 M𝜄
(6.3)

where 𝜄 is the influence vector presenting unitary values in the terms that correspond to lateral
displacements and zeros in the components corresponding to rotations; and h is the vector
containing the height of each node in the terms that correspond to its lateral displacements
and unitary values in the components corresponding to rotations.

The base shear effective modal mass (henceforth modal mass) coincides with the mass of
a single-degree-of-freedom system that produces the same base shear force as the complete
system vibrating at the corresponding modal frequency. On the other hand, the base-moment
effective modal height (henceforth modal height) is the height of the aforementioned modal
mass at which its inertia force produces the same base overturning moment as the distributed
masses of the system at the modal frequency. The modal mass and height can also be obtained
for all the modes of vibration by using expression (6.3) with the corresponding modal shapes.
For higher modes negative modal heights can be obtained, implying that the base shear force
and moment have opposite algebraic signs. The choice of these parameters to represent the
system is made as the base shear force and moment are the reactions that interact with the
foundation impedance functions.

6.3.3 Reduced substructuring model
Once the modal parameters of the OWT in fixed-base conditions and the impedance functions
representing the soil-foundation system are obtained, they are coupled together reducing the
problem to a three degrees-of-freedom model representing the complete system as depicted
in Fig. 6.3d, where 𝑢 is the mass lateral displacement relative to the base and 𝑢𝑏 and 𝜃𝑏 are
the base displacement and rotation. In coherence with the model used for the computation of
the fixed-base modal parameters, a given harmonic free-field ground lateral acceleration ̈𝑢𝑔
is defined as system excitation. The equations of motion of the simplified problem can then
be expressed in matrix form as:

⎛
⎜
⎜
⎝

⎡
⎢
⎢
⎣

𝐾∗ 0 0
0 𝐾𝐻𝐻 (𝜔) 𝐾𝐻𝑅(𝜔)
0 𝐾𝐻𝑅(𝜔) 𝐾𝑅𝑅(𝜔)

⎤
⎥
⎥
⎦

− 𝑀∗𝜔2 ⎡
⎢
⎢
⎣

1 1 𝐻∗

1 1 𝐻∗

𝐻∗ 𝐻∗ (𝐻∗)2

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎠

⎧⎪
⎨
⎪⎩

𝑢
𝑢𝑏
𝜃𝑏

⎫⎪
⎬
⎪⎭

= −𝑀∗ ̈𝑢𝑔
⎧⎪
⎨
⎪⎩

1
1

𝐻∗

⎫⎪
⎬
⎪⎭

(6.4)

where 𝐾∗ = (2𝜋𝑓𝑛)2𝑀∗(1 + 2i𝜉) is the lateral structural stiffness associated with the first
mode that also includes the structural damping through the modal damping factor 𝜉.

In order to obtain the flexible-base fundamental frequency and damping ratio, the method-
ology of finding an equivalent single-degree-of-freedom oscillator that reproduces the system
response is used (see e.g., [26, 195]). In this study, a hysteretically damped oscillator with
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natural frequency 𝜔̃𝑛 and damping ratio ̃𝜉 is assumed and the equivalence is established in
terms of the transfer function:

𝑄(𝜔) =
|
𝜔2

𝑛𝑢
̈𝑢𝑔 |

=

|
|
|
|
|
|

1

(1 − 𝜔2

𝜔̃2
𝑛 ) + 2i ̃𝜉

|
|
|
|
|
|

(6.5)

which represents the shear force at the base of the structure per effective seismic force [67].
As the single-degree-of-freedom system cannot reproduce the response of the substructuring
model in all the frequency range, the maximum value 𝑄𝑚 of the transfer function is chosen as
common point between both models. This maximum value is obtained by iteratively solving
Eq. (6.4). The flexible-base fundamental frequency corresponds to the frequency at which
this maximum value takes place, while the equivalent damping ratio is computed as:

̃𝜉 = 1
2𝑄𝑚

(6.6)

Validation of the reduced substructuring model

In order to validate the ability of the proposed formulation to correctly capture the flexible-
base fundamental frequency, an enhanced FEM model where the presence of the soil-pile sys-
tem is included through the corresponding impedance functions is used. For that purpose, the
displacement of the superstructure due to the ground horizontal acceleration and considering
the foundation stiffness and damping is obtained by solving the equation:

(K′ (𝜔) − 𝜔2M)U = −M𝜄 ̈𝑢𝑔 (6.7)

being K′ (𝜔) the superstructure stiffness matrix including the foundation dynamic stiffness
and damping functions in the terms that correspond to the ground node and U the vector
containing the nodal lateral displacements and rotations relative to the ground displacement.
The flexible-base fundamental frequency is then obtained as the one at which the maximum
response, in terms of 𝑄(𝜔), takes place.

The flexible-base fundamental frequencies of the OWTs defined in Table 6.1 are com-
puted through both the proposed three-step and the enhanced FEM formulations. Table 6.2
shows the computed modified eigenfrequencies together with the errors with respect to the
enhanced FEM model, considering the Nelson Field soil profile. The results show negligible
differences between both methodologies, revealing the ability of the proposed strategy to cor-
rectly represent the effects of the foundation on the system fundamental frequency. Results
for harder soils were also obtained producing smaller differences, but are not presented for
simplicity’s sake.

It is important to notice that both the three-step and the FEM approaches are substruc-
turing methodologies, as they incorporate the soil-foundation interaction effects through the
impedance functions. The principal difference between them is that the three-step formula-
tion makes use of the fundamental modal mass and height concepts (and therefore considers
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the fundamental mode only), while the FEM model does not, and takes all modes into ac-
count. The validation results show that the flexible-base fundamental frequency can be accu-
rately estimated by using the three-step approach owing to the fact that the first mode of the
soil-structure system is principally influenced by the first mode of the fixed-base structure.
However, the three-step methodology does not guarantee a correct estimation of the modi-
fied natural frequencies for higher modes. The principal advantage of the proposed three-step
methodology lies in its efficiency and suitability for undertaking parametric studies.

6.4 Analysis of the properties of the set of OWTs
In this section, the modal parameters and monopile geometries of the set of real offshore
wind turbines presented in Section 6.2 are analysed. The purpose of this study is to delimit
the typical range in which the values of those parameters lie in order to adequately define the
parametric study of the influence of the SSI effects. As a result of the analyses, characteris-
tic relations between the modal parameters of medium-sized monopiled OWT structures are
found.

Analysis of the modal properties

The results of the modal analysis following the methodology presented in Section 6.3.2
for the studied OWT systems are shown in Table 6.3. The fixed-base fundamental frequencies
of the superstructures are found to be between 0.2-0.55 Hz, agreeing with the typical range for
OWT constructions. On the other hand, the values of the modal mass and height are closely
related to the structural dimensions. The modal mass is found to be 25-35% of the system
total mass (including water added mass), while the modal height coincides with 85-90% of
the system total height.

The obtained modal parameters for the studied OWT systems are plotted against each
other in Fig. 6.4. A strong correlation is found for all the three possible combinations. A par-
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Figure 6.4: Modal parameters for the studied set of OWT (crosses). Polynomial regressions
of the modal height (a, solid lines) or mass (b, solid lines) as a function of the fixed-base
fundamental frequency. Relation between the modal mass and modal height obtained by
using the regressed expressions (c, dashed lines).
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ticularly high dependence between the modal height and fixed-base fundamental frequency
is found. In order to derive an expression that relates the modal parameters, the computed
modal mass and height values are fitted by first and second order polynomials as functions of
the superstructure fixed-base eigenfrequency, yielding the following expressions:

𝐻∗(𝑓𝑛) = 130 − 138𝑓𝑛 [m] (6.8a)
𝑀∗(𝑓𝑛) = 4.24 − 4.84𝑓𝑛 [105 kg] (6.8b)

𝐻∗(𝑓𝑛) = 161 − 341𝑓𝑛 + 292𝑓 2
𝑛 [m] (6.9a)

𝑀∗(𝑓𝑛) = 5.92 − 8.97𝑓𝑛 + 4.89𝑓 2
𝑛 [105 kg] (6.9b)

The proposed polynomials are also plotted in Figs. 6.4a,b as solid lines, showing that the
modal height and mass can be fitted without significant errors by both the linear and quadratic
expressions. Dispersion is higher for modal mass than for modal height. The modal mass
corresponding to OWT number 14 is the only one that does not adequately fit in the obtained
mass-frequency relations. This structure has a higher modal mass owing to its thick tower
and pile walls when compared to the rest of the studied systems. Finally, Fig. 6.4c shows
the relations between modal mass and height obtained by using the proposed polynomials.
Eqs. (6.8) or (6.9) correctly represent the relation between both parameters. The use of these
expressions is not recommended outside the frequency range 0.15-0.60 Hz shown in Figs
6.4a,b.

Now, and once the fixed-base fundamental frequency is set, the modal mass and modal
height can be accurately estimated through Eqs. (6.8) or (6.9), reducing the number of pa-
rameters needed to represent the superstructure from three to one. With the aid of those
expressions, instead of a discrete number of structures, a continuous set of OWT systems
representing the typical dimensions for this type of constructions can be included in the re-
sults presented in the following sections. Both the quadratic and linear expressions are used:
the first fits the data better, while the constant slope of the latter allows to easily understand
the contribution of each parameter to the obtained results.

Analysis of the monopile dimensions

Now that the superstructure is completely defined, it is necessary to establish the dimen-
sions of the monopile foundations. Following the same procedure conducted for the modal
parameters, Fig. 6.5 presents the relation between the pile diameter (a) or pile embedded
length (b) and the modal parameters for the OWT systems defined in Table 6.1. The data
are fitted again by first and second order polynomials as functions of the system fixed-base
fundamental frequency.

A high correlation is found between the pile diameter and the superstructure fixed-base
fundamental frequency, showing that smaller pile diameters tend to correspond to shorter
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Figure 6.5: Pile diameter (a) and pile length (b) with respect to superstructure modal param-
eters for the studied OWT systems (crosses). Polynomial regressions of the pile diameter as a
function of the fixed-base fundamental frequency (a, solid lines). Relations between the pile
diameter and modal height or mass obtained by using the regressed expressions (a, dashed
lines). Polynomial regressions of the pile embedded length as a functions of the fixed-base
fundamental frequency (b, solid lines).

and more rigid structures. The fitting procedure yields to the following expressions, plotted
as solid lines in Fig. 6.5a:

𝐷𝑝(𝑓𝑛) = 4.97 − 2.40𝑓𝑛 [m] (6.10)

𝐷𝑝(𝑓𝑛) = 5.40 − 5.15𝑓𝑛 + 3.93𝑓 2
𝑛 [m] (6.11)

The use of these expressions together with Eqs. (6.8) and (6.9) adequately represents the
relations between the pile diameter and superstructure modal mass and height too, as shown
by the dashed lines in Fig. 6.5a.

On the other hand, the pile length cannot be correctly adjusted by the polynomial fitting
as a function of the fixed-base fundamental frequency. In this type of constructions, the
pile embedded length is more dependent on the soil properties than on the superstructural
dimensions. Thus, different values of the pile length can be found independently of the fixed-
base fundamental frequency.

Finally, the pile wall thickness value is established following the API [196] recommen-
dation as a function of the pile diameter:

𝑡𝑝 ≈ 6.37 +
𝐷𝑝
100 [mm] (6.12)

Note that 𝛿𝑝 = (𝐷𝑝 − 2𝑡𝑝)/𝐷𝑝.

6.5 Dynamic characterization of OWT including SSI
As commented in the previous section, if Eqs. (6.8) or (6.9) are used, the superstructure is
completely defined by setting the fixed-base fundamental frequency and the structural modal
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Figure 6.6: Effective-to-fixed-base natural frequency and effective-to-structural damping ra-
tios. Comparison between the results of the regressed (lines) and real (crosses) modal param-
eters and pile dimensions. Results for the Nelson Field soil profile. Pile length 𝐿𝑝 = 25 m
for the regressed dimensions.

damping. Values between 0.15-0.60 Hz are used as a common range within which the OWT
fixed-base eigenfrequency is found and coinciding with the range within the studied set of
OWT structures lies. On the other hand, for the fixed-base modal damping ratio a value of
𝜉 = 1% is chosen following the recommendation of the GL Guideline [197].

The pile diameter and wall thickness are also determined once the fixed-base fundamental
frequency is set by using Eqs. (6.10) or (6.11) and (6.12), respectively. On the other hand,
and aiming at studying different foundation geometries, three values of pile embedded length
𝐿𝑝 = 15, 25 and 35 m are considered.

In the following, the effects of the structural properties, soil profile and monopile dimen-
sions on the dynamic characterization of offshore wind turbines are analysed.

6.5.1 Influence of the superstructure properties
In order to explore the influence of the OWT fixed-base fundamental frequency and damping
on the magnitude of the SSI phenomena, Fig. 6.6 presents the ratios ̃𝑓𝑛/𝑓𝑛 (effective-to-fixed-
base natural frequency ratio) and ̃𝜉/𝜉 (effective-to-structural damping ratio) as functions of the
fixed-base fundamental frequency of the superstructure. Their values are obtained following
the simplified procedure detailed in section 6.3.3. The results are obtained assuming the
Nelson Field soil profile. The crosses represent the results obtained assuming the properties of
each one of the initial OWT systems (modal properties listed in Table 6.3 and pile dimensions
in Table 6.1). On the other hand, the lines present the results that are obtained by using the
regressions from (6.8) to (6.12) and assuming a pile embedded length 𝐿𝑝 = 25 m.

Attending to Fig. 6.6, the curves from the fitted polynomials follow the overall trends of
the points representing the actual OWT systems, both in the frequency and damping varia-
tions. Thus, the use of the fitting expressions for the structural modal mass and height and
for the monopile diameter is justified for the general study of the SSI effects on the dynamic
properties of OWT structures.
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At low frequencies (𝑓𝑛 < 0.45 Hz), virtually the same results are obtained from the use
of both the linear or quadratic fitting. However, at higher frequencies (𝑓𝑛 > 0.45 Hz), the
curves diverge owing to the differences that are produced at these frequencies in the regression
polynomials, especially the ones of the modal mass and height (see Fig. 6.4). The quadratic
expressions are found to better adjust the real points, but, as only two points are available
within this frequency range, it is not possible to discern whereas the quadratic polynomials
represent the real trend or if this effect is produced due to overfitting.

In order to explain the shapes of the curves and the differences observed between the re-
sults of the real and fitted data, one has to consider the influence of each modal parameter
(fixed-base frequency, modal mass and height) on the magnitude of the SSI phenomena. All
of these parameters have the same effect: increasing its value amplifies the magnitude of the
SSI (i.e. increases the reduction of the fundamental frequency and the damping gain). This
can be easily explained for the modal mass and fixed-base fundamental frequency: when one
of these parameters augments while keeping the other constant, an increment of the system
stiffness is produced. Thus, the foundation becomes relatively softer compared to the super-
structure, resulting in more significant SSI phenomena taking place. On the other hand, the
increasing importance of SSI effects for higher wind turbines is in line with the results of
Zania [174], and also agrees with the conclusions of classical works [195,198] showing that
the SSI effects becomes more evident as the wave parameter (𝜎 = 𝑐𝑠/𝐻𝑓𝑛) decreases. Those
effects are further illustrated by Fig. 6.7, which presents the changes in the fundamental
frequency and structural damping ratio that are produced when one of the three modal pa-
rameters varies keeping the other two constant. Several values within the considered ranges
are used, and the diameter of the monopile is kept independent of the fundamental frequency
in order to isolate the effects of the modal properties.

Attending to the commented effects, the shape of the curves in Fig. 6.6 can be explained
considering that, in their first part (𝑓𝑛 < 0.45 Hz) the magnitude of the SSI phenomena in-
creases with the fixed-base natural frequency; while in the second part (𝑓𝑛 > 0.45 Hz) the
effect of the reduction in the modal mass and height (Fig. 6.4) overtakes the effect of the
increment in the eigenfrequency if the linear expressions are used. On the other hand, if the
quadratic relations are considered, only the frequency effect is present as the modal mass and
height remain practically the same in the high frequency range, explaining why the magni-
tude of the SSI phenomena continues increasing with the fixed-base natural frequency. It is
important to note that the influence of the variation of the pile diameter due to the changes in
the fixed-base fundamental frequency has been omitted in the previous discussion in order to
focus on the effects of the modal properties. As the monopile diameter decreases as the fixed-
based fundamental frequency increases (see Fig. 6.5), the SSI effects are further magnified
due to the higher flexibility of the foundation. In any case, the influence of the pile diameter
is thoroughly analysed in Section 6.5.3.

The results presented by Fig. 6.6 also prove the importance of including the SSI effects
in the preliminary design stages of OWT structures. For 𝑓𝑛 < 0.25 Hz, the ̃𝑓𝑛/𝑓𝑛 ratio is
found to be around 0.92 (8% reduction) while for 𝑓𝑛 > 0.25, this reduction can be greater
than 15%, with one data point at 𝑓𝑛 ≈ 0.25 yielding a ̃𝑓𝑛/𝑓𝑛 ratio much smaller than the one
obtained from the fitted expressions, and with the effects of SSI growing with the fixed-base
fundamental frequency of the superstructure.
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Despite for all of the studied systems a structural modal damping 𝜉 = 1% is assumed,
Fig.6.8 illustrates that depending on the considered fixed-base modal damping coefficient,
the SSI effects change its value in a different manner. Fig.6.8 shows the relation between the
flexible and fixed-base damping ratios that is obtained by assuming different modal damping
ratios (𝜉 = 1-8%) and considering the same pile length and soil profile as for Fig. 6.6. For a
modal damping 𝜉 = 3% virtually no variations are seen. As the modal damping goes away
from this value, the variations become stronger: increasing the flexible-base damping ratio
for 𝜉 < 3% and decreasing it otherwise. Nevertheless, the frequency range at which the
system is more sensitive to the SSI effects, i.e. stronger variations, is almost the same. These
conclusions are equally valid both for the linear and quadratic fittings.

6.5.2 Influence of the soil profile
Figs. 6.9 and 6.10 present the effective-to-fixed-base natural frequency ratio and the effective-
to-structural damping ratio as a function of the fixed-base fundamental frequency of the su-
perstructure for the continuous set of configurations obtained from the fitting expressions
obtained in Section 6.4 and assuming a pile length 𝐿𝑝 = 25 m. The results are grouped ac-
cording to the use of the linear or the quadratic fitting. First, Fig. 6.9 shows the results for the
two typical North Sea’s profiles (Nelson Field and Hutton TLP), the sand and clay profiles,
and the homogeneous soil with 𝑐𝑠,30 = 180 m/s as its value is the closest to the one of the
Nelson Field profile. Then, Fig. 6.10 compares the results obtained for the homogeneous and
variable profiles with 𝑐𝑠,30 = 180 and 360 m/s in order to study the effects of harder soils and
the influence of the variable-with-depth profile.

The soil properties and profile evolution with depth have a direct influence on the mag-
nitude of the SSI effects, producing higher variations as the soil becomes softer. However,
the obtained results show the necessity of using a good measure to characterize the soil flex-
ibility. Using the 𝑐𝑠,30 as a value to define the soil seems not to be a feasible option: profiles
with close (e.g. Nelson Field and Homogeneous in Fig. 6.9) or even the same (Fig. 6.10)
value of this mean shear wave velocity produce different frequency and damping variations
depending on the evolution with depth of the profile. Moreover, the homogeneous assump-
tion is a non-conservative hypothesis as those profiles produce smaller variations in both the
fundamental frequency and equivalent damping than variable profiles with similar or higher
values of 𝑐𝑠,30.

The superficial layers are the ones that govern the effects of the SSI on the dynamic prop-
erties of the studied structures. Fig. 6.9 shows that Nelson Field, Hutton TLP and clay profiles
(which present identical properties along the first ∼ 10 meters) produce virtually the same
variations in the system fundamental frequency and damping. This is related to the fact that
the horizontal impedance of piles in non-homogeneous soils is principally determined by the
superficial layers [84, 85], being this impedance term of crucial importance to the studied
problem.

As expected, the magnitude of the SSI phenomena is less significant in harder soils (Fig.
6.10). However, variations over 10% in the system fundamental frequency and over 30% in
the structural damping can be produced even for these hard soils. Fig. 6.10 shows again the
importance of accurately knowing the actual soil profile. Results for the variable-with-depth
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Figure 6.9: Influence of the soil profile on the effective-to-fixed-base natural frequency ratio
and effective-to-structural damping ratio. Pile length 𝐿𝑝 = 25 m.

soil with 𝑐𝑠,30 = 360 m/s are closer to the ones for the 𝑐𝑠,30 = 180 m/s homogeneous profile
rather than to the homogeneous soil with the same mean velocity.

Influence of the soil Poisson’s ratio

Fig. 6.11 presents the variations in the fundamental frequency and damping of the OWT
systems for the Nelson Field profile and considering different values of the soil Poisson’s
ratio. This analysis is made in order to show the influence of this parameter on the SSI effects,
as high Poisson’s ratios are commonly used to represent saturated soils (through equivalent
elastic media). Values of 𝜈𝑠 between 0.35-0.49 are considered, while the rest of soil properties
have the same values introduced in Section 6.2.

The results of Fig. 6.11 show that increasing the soil Poisson’s ratio has almost no influ-
ence on the SSI effects, agreeing with the findings of Daamgard et al. [177]. The soil profile is
defined in terms of the shear wave velocity. Thus, as the Poisson’s ratio augments, the soil be-
comes slightly more rigid and, therefore, the variations in the system fundamental frequency
and damping are marginally reduced. However, practically the same results are obtained for
the extreme cases of 𝜈𝑠 = 0.35 and 0.49. This effect is seen for all the studied profiles, but
only the ones corresponding to the Nelson Field profile are presented for brevity’s sake.
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Figure 6.11: Influence of the soil Poisson’s ratio on the effective-to-fixed-base natural fre-
quency ratio and effective-to-structural damping ratio. Pile length 𝐿𝑝 = 25 m. Results for
the Nelson Field soil profile.
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frequency ratio and effective-to-structural damping ratio. Linear fitting. 𝐿𝑝 = 15 m (solid
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6.5.3 Influence of the monopile dimensions
Influence of the pile diameter

The pile diameter has a decisive role in the variations in the fundamental frequency
and damping of the superstructure produced due to SSI effects. As the foundation stiffness
strongly depends on the pile diameter, increasing its value results in a great reduction of the
shifts in both the system eigenfrequency and damping. However, this role is not clearly seen
in the previous results, as the diameter is implicitly defined as a function of the fixed-base fun-
damental frequency. Fig. 6.12 presents the effective-to-fixed-base natural frequency ratio and
the effective-to-structural damping ratio obtained by assuming three frequency-independent
pile diameters in addition to the results corresponding to the use of the diameter linear re-
gression (eq. 6.10). As the same effects are found for all the studied cases, only the results
corresponding to the linear expressions and for two soils profiles: Nelson Field and Homo-
geneous (𝑐𝑠,30 = 360 m/s) representing soft and hard soils, respectively, are shown.

The curves obtained through the regressed pile diameter present an increment in the mag-
nitude of the SSI phenomena as the fixed-base frequency augments, due to the reduction in
the pile diameter (see Fig. 6.5). The effect of the pile diameter is almost independent of the
pile length or the soil profile. However, for the softest soil profile, the differences between the
results of the higher and lower diameters increase: e.g., for Nelson Field, the highest varia-
tion in the system fundamental frequency goes from 0.81 to 0.91 depending on the diameter,
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while for the Homogeneous (𝑐𝑠,30 = 360 m/s) this variation goes from 0.89 to 0.95.

Influence of the pile length

Fig. 6.12 also presents the results obtained assuming two different pile embedded lengths:
𝐿𝑝 = 15 m and 𝐿𝑝 = 25 m.

Contrary to the diameter, the pile length has little importance on the effects of the foun-
dation on the system fundamental frequency. Only for the highest diameter and softest soil
profile, some differences can be seen between the 15 m piles and the longer one. This is
produced because of the fact that for higher diameters (smaller 𝐿/𝐷 ratios) the active length
of the pile increases. Moreover, the differences between the 15 and 25 m lengths increase
for the variable-with-depth profiles, where longer piles can reach stiffer layers. The above-
mentioned effects are also manifested for the damping variations in a greater extent. 𝐿𝑝 = 25
m is found to be larger than the active pile length in all cases, as results obtained for 𝐿𝑝 = 35
m are completely coincident with those of 𝐿𝑝 = 25 m (not shown for the sake of clarity).

On the other hand, for harder soils (Homogeneous 𝑐𝑠,30 = 360 m/s), the active length for
all diameters is below the 15 meters. Thus, no differences are observed between the studied
lengths in both the frequency and damping variations.

6.6 Conclusions
In this chapter, the developed model is used together with a simplified substructuring method-
ology for the dynamic characterization of monopiled offshore wind turbines. The integral
model is used to compute the impedance functions of different variable-with-depth soil pro-
files based on real boreholes of the North Sea. On the other hand, the superstructure is repre-
sented by its fixed-base fundamental frequency and the first-mode base shear effective modal
mass and height in the substructuring model.

Data from different medium-sized existent OWT systems that are found in the literature
are used to obtain relations between the modal properties that are characteristics of this type
of constructions. These relations are then employed to study the changes in the fundamental
frequency and damping ratio of general OWT structures founded on different monopiles and
soil profiles:

• The results confirm the importance of considering the foundation stiffness in the design
stage of OWT systems in order to keep its fundamental frequency within the allowed
range and to estimate the equivalent damping ratio of the structure.

• The influence of the flexibility of the foundation is especially relevant for small diameter
monopiles on soft soils.

• The magnitude of the SSI phenomenon is significant for 𝑓𝑛 > 0.25 Hz, and specially
for 𝑓𝑛 ≈ 0.45 Hz. This frequency range usually corresponds to a soft-stiff design, so
special attention is required for those systems whose fundamental frequency is close to
the 1P frequency.
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• The recommendation of keeping the structural fundamental frequency ±10% away
from the 1P and 3P (or 2P for two-bladed rotors) frequencies may not be enough if
the foundation-structure fundamental frequency is not adequately computed, as the SSI
effects can reduce the fixed-base fundamental frequency more than a 15%.

• An accurate knowledge of the soil properties and their evolution with depth is required
when evaluating the foundation effects. Mean values, such as 𝑐𝑠,30, are insufficient for
characterizing the soil stiffness.

• The superficial soil layers are found to be the ones that govern the changes in the fun-
damental frequency and damping ratio due to SSI effects.
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7.1 Summary and conclusions
The present dissertation formulates and implements a numerical model for the dynamic anal-
ysis of pile foundations. The formulation is based on the integral expression of the reciprocity
theorem in elastodynamics and the use of specific Green’s functions for the layered half space.
On the other hand, piles are treated as load lines acting inside the soil domain, introducing
their additional stiffness effects through the equilibrium finite element equations. The soil and
piles equations are coupled together by imposing compatibility and equilibrium conditions
in terms of displacements and soil-pile interaction tractions, respectively.

The use of the advanced fundamental solution, that already satisfies the boundary condi-
tions of the layered half space, removes the need of meshing any of the soil contours (free-
surface or layer interfaces). In addition to this, the treatment of piles as dimensionless load
lines avoids any discretization of the soil-pile interfaces, with the corresponding reduction
in the number of degrees of freedom of the problem, especially at the pile shaft. Thus, a
simplified (yet still rigorous) model is obtained where all the formulation is written only in
terms of the pile variables: displacements and interaction tractions. The proposed numerical
tool allows the study of the dynamic behaviour of pile foundations in a highly efficient way,
even in soil profiles that present a high variability of their properties with depth.

The computational performance of the developed code is further optimized through a
numerical strategy that significantly reduces the number of times that the advance funda-
mental solution has to be computed. As the evaluation of the fundamental solution is the
most time-consuming process of the model, the implementation of this strategy leads to im-
portant savings in the running times of the code, especially when dealing with regular pile
configurations.

The developed model can assume different excitation types in order to tackle a variety
of engineering problems. The incidence of seismic wavefronts propagating through the lay-
ered media, the presence of external loads acting over some regions of the free-surface, and
boundary conditions directly imposed at the pile caps or pile heads in terms of displacements
or forces are the possible excitations sources. After validating the proposed integral model,
in the present dissertation the following problems involving piles in non-homogeneous media
have been considered:

• Impedances of inclined piles in non-homogeneous soil profiles. The stiffness and damp-
ing functions of single piles and pile groups with inclined elements have been obtained
in the frequency domain. The influence of the soil profile on the impedance functions
has been demonstrated by comparing the results of different soils with several levels of
non-homogeneity.

• Seismic response of piles in non-homogeneous soil profiles. Kinematic interaction fac-
tors and maximum bending moments for piles embedded in continuously-variable soil
profiles have been obtained. The importance of the soil profile and the inability of
the recommended mean soil properties to estimate the foundation response have been
highlighted by the obtained results.
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• Piles as ground vibration mitigation measure. The proposed model is able to simulate
the use of piles as a measure to limit the transmission through the soil of vibrations
produced by a point load in the vertical direction. The performance of pile barriers
embedded in different soil profiles has been discussed in terms of the average amplitude
reduction factor over a surface behind the piles.

• Dynamic characterization of monopiled offshore wind turbines including SSI effects.
The importance of considering the flexibility of the monopile in the estimation of the
dynamic properties of the foundation-structure system for offshore wind turbines has
been confirmed through the use of a substructuring methodology and impedance func-
tions obtained by the integral model. It has been found that the reductions in the system
fundamental frequency due to the soil-structure interaction effects can be larger than
the 10% value given by the recommended design guides, especially in soil profiles with
a high variability.

A thorough analysis of each one of these problems and more detailed conclusions are pre-
sented at the end of their corresponding chapters.

7.2 Future research directions
In this section several future research directions are proposed accordingly with the experience
gained from the present work. They are separated into three main directions. The first focuses
on the use and enhancement of the developed model for the analysis of pile foundations and
piled structures in layered soils. The second group is related to the implementation of the
advanced fundamental solution into other boundary-element-based codes developed by the
Research Group. The last direction is aimed at extracting technical knowledge from the results
obtained by the integral model. These proposed lines of research are detailed in the following:

Integral model:

• Dynamic analysis of pile foundations. In its present form, the developed numerical tool
can be used to address a wide variety of problems involving piles in layered media.
Some of these problems are:

– From the impedance functions and kinematic interaction factors obtained by the
integral model, and making use of substructuring techniques [26], study the in-
fluence of the soil profile on the soil-structure interaction phenomena (variations
in structural period and damping).

– Study of the seismic response of pile foundations embedded in layered soils sub-
jected to incident waves with an arbitrary angle of propagation. Analysis of the
influence of the soil profile on kinematic displacements and bending moments.

– Application of the integral model to study more complex pile configurations. Sev-
eral examples are the analysis of pile groups formed by a large number of elements
or the study of the performance of “metabarriers” [159,160] as ground vibration
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Figure 7.1: Sketch of the enhanced integral model with finite element structures.

mitigation measure. In this direction, analysis of optimal pile configurations by
using any optimization techniques.

• Implementation of superstructures. Following the previous BE-FE model, it would be
possible to introduce the presence of superstructures supported by the pile foundations.
This way, the enhanced model would allow the direct solving of problems that are
complex to handle through substructuring approaches.

– Generic structural types could be implemented by combining beam and shell fi-
nite elements. The coupling between these structures and the piles could be done
through the rigid caps or directly by imposing compatibility and equilibrium con-
ditions at the corresponding nodes. This approach would allow the simulation of
flexible foundations, as well as structures supported by several pile groups.

– This enhanced code could also consider several structures that only interact be-
tween each other through the energy propagation in the soil. By doing so, the
influence of the soil profile in the structure-soil-structure interaction effects could
be analysed.

– Other application of the enhanced model with structures is the analysis of site-city
interactions [199–203]. For this study, each building could be modelled as a single
beam (complex beam elements could be used in order to consider eccentricity
between the elastic and mass centres) connected to a single pile (which could
have equivalent properties that represent other foundation types).

• Study of moving-load problems. The developed formulation could be adapted to analyse
problems involving a point load that moves with a certain velocity over the free-surface.
The tuning of this type of formulation would allow analysing study cases in which the
excitation of the system is the passing of near vehicles, such as railway traffic.

In its most developed form, the developed numerical model could be used to simulate sys-
tems involving generic sources of excitation (seismic waves, traffic loads, etc.), several piled
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structures and the presence of pile barriers to mitigate the ground vibrations, as represented
in Fig. 7.1. The problem would be tackled through a direct approach, and a high variability
of the soil profile could be considered.

Use of the advanced fundamental solution in other codes:

• Regularization of the fundamental solution. An adequate regularization process of the
fundamental solution should be implemented in order to accurately integrate it inside
two-dimensional elements without using any special collocation strategy. Once this
problem is solved, it would be possible to introduce the fundamental solution for the
layered half space in the previous boundary element codes. This way, different founda-
tion types (e.g. surface or embedded foundations) could be analysed without meshing
the free-surface and layer interfaces. The Research Group has started working in this
direction. As a first approach, Mindlin’s solution for the homogeneous half space has
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Figure 7.2: Regularization of the fundamental solution for the layered half space. Problem
adapted from [62]. Collocation point at the free surface (𝑧𝜅 /ℎ = 0), at a layer interface
(𝑧𝜅 /ℎ = 3) and inside a layer close to an interface (𝑧𝜅 /ℎ = 3.1). Regularization of the layered
fundamental solution by using Mindlin’s solution assuming the properties of the layer (collo-
cation inside a layer or at free-surface) or the average properties of the two layers connected
by the interface (collocation at layer interface).
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been used to subtract the singularity of the layered fundamental solution. This tech-
nique has leaded to satisfactory results when the collocation point is located at the
free-surface or inside a soil layer, but not when the collocation point coincides with a
layer interface, as illustrated by Fig. 7.2. This first approach could be used to analyse
soils with low non-homogeneity. For a more general solution, in a further step, the
regularization through the static bi-material solution [64] would be considered.

• Numerical strategies for an efficient use of the fundamental solution. In order to ef-
ficiently use the advanced fundamental solution in a boundary element code (which
generally implies a larger number of degrees of freedom) it would be necessary to
develop some techniques that speed up the evaluation process of the fundamental so-
lution. These techniques could be considered in the sense of reusing values for pairs
of collocation-observation points, either by exploiting geometrical symmetries or set-
ting some kind of databases; but also more elaborated approaches such as the use of
appropriate interpolation functions or surrogate models could be contemplated.

By completing these tasks, the numerical models could efficiently simulate the dynamic be-
haviour of a huge number of structural and foundations types founded in soils with a high
non-homogeneity level. The structural design could even be made by combining continuous
elements with simplified beam or shell elements.

Knowledge transfer:

• Open access software. The models and numerical tools developed from the present
research work could be released in the future. This could be in form of open source li-
braries or executable files. It is worthy to highlight that owing to the benefits of the used
fundamental solution, these codes could be run in a standard-performance computer.

• Extraction of recommendations through Machine Learning. The versatility and effi-
ciency of the proposed model could be used to obtain large sets of results for problems
with high interest in engineering. By using those large databases together with ma-
chine learning techniques [204–209], it would be possible to obtain expressions and
recommendations of direct practical applicability. Security factors for including soil-
structure interaction effects, expressions for equivalent properties that allow the study
of variable profiles through homogeneous models or corrector coefficients that incor-
porate the effects of the soil profile are some examples of possible applications. This
new line of research has several common points with some of the work done by other
Divisions of the SIANI Institute. Thus, it could open new collaborations and synergies
between the different Research Groups.

These last future research directions are aimed at giving practical value and utility to the
results obtained by the developed model. They try to take advantage of the efficiency of this
model in order to produce scientific knowledge that could be useful for the scientific and
technical communities in the field of civil engineering.
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This appendix contains the formulation of the displacements and stresses at any point of the
layered soil domain produced by the incidence of body waves with a generic angle of propaga-
tion. The proposed formulation starts with the expressions proposed by Wolf [210] to define
the displacements and stress tensor for each layer of the soil. Then, a procedure based on
Transmission and Reflection Matrices (TRM), similar to the one employed to obtain the used
Green’s functions [62], is used in order to relate the amplitudes of the upwards and down-
wards waves that propagates inside each layer to the ones that defines the seismic excitation.
Following the presented methodology, it is possible to directly obtain the displacements and
stresses at any depth of the layered half space domain without having to solve any system of
equations.

First, Section A.2 details the procedure for incident SH waves. Then, the obtained expres-
sions are generalized to the SV-P wave problem in Section A.3. Section A.4 couples together
both formulations into a single set of equations. The appendix is ended by Section A.5 which
highlights some numerical aspects that should be considered for the implementation of the
proposed methodology.

A.1 Problem definition
The seismic excitation is modelled as a wavefront of body waves originated by an infinitely-
distant source. At the studied site, this wavefront is assumed to propagate through the half
space layer inside the 𝑥−𝑧 plane with a known (yet arbitrary) angle of propagation. Once this
incident wavefront reaches the first layer interface, reflection and transmission phenomena
take places, producing different waves that either propagates upwards to the free-surface or
are reflected back to the unbounded media.

Figure A.1: Definition of the soil stratification.

Fig. A.1 shows a sketch of the problem, together with the layer numbering and coordinate
system of reference that is used along this appendix. The nomenclature of the properties for
each layer 𝑗 of the soil is:

• Layer thickness: ℎ𝑗
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• Position of the lower interface with respect to the free-surface: 𝑧𝑗

• Angle of propagation of each body wave: 𝜓SH𝑗
, 𝜓SV𝑗

and 𝜓P𝑗

• Shear and Primary wave propagation velocity: 𝑐𝑠𝑗 and 𝑐𝑝𝑗

• Shear and Lamé’s elastic constants: 𝐺𝑗 and 𝜆𝑗

• Displacement vector at any point inside the layer:

𝐮𝑗 =
⎧⎪
⎨
⎪⎩

𝑢𝑗
𝑥

𝑢𝑗
𝑦

𝑢𝑗
𝑧

⎫⎪
⎬
⎪⎭

(A.1)

• Stress tensor at any point inside the layer:

𝛔𝑗 =
⎛
⎜
⎜
⎝

𝜎𝑗
𝑥𝑥 𝜏𝑗

𝑥𝑦 𝜏𝑗
𝑥𝑧

𝜏𝑗
𝑥𝑦 𝜎𝑗

𝑦𝑦 𝜏𝑗
𝑦𝑧

𝜏𝑗
𝑥𝑧 𝜏𝑗

𝑦𝑧 𝜎𝑗
𝑧𝑧

⎞
⎟
⎟
⎠

(A.2)

Together with the aforementioned properties, the following layer-independent parameters
are also used: excitation angular frequency 𝜔, imaginary unit i = √−1, apparent velocity 𝑐
and its corresponding wavenumber 𝑘 = 𝜔/𝑐.

A.2 Incident SH waves (out-of-plane problem)

Figure A.2: Definition of the waves travelling through each layer. Incident SH waves.

First, the out-of-plane problem of incident SH waves is considered. The waves that prop-
agate through each layer of the soil are depicted in Fig. A.2. For this excitation, the waves
propagate in the 𝑥 − 𝑧 plane imposing displacements in the 𝑦 direction. The compatibility
condition in the 𝑥 direction for each soil interface imposes that:

𝑐 =
𝑐𝑠𝑗

𝑚𝑗
(A.3a)

𝑘 = 𝜔
𝑐 = 𝜔

𝑐𝑠𝑗

𝑚𝑗 (A.3b)
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where, for simplicity:

𝑚𝑗 = cos 𝜓SH𝑗
(A.4a)

𝑡𝑗 = −i
√

1 − 1
𝑚2

𝑗
≡ tan 𝜓SH𝑗

(A.4b)

𝑚𝑗𝑡𝑗 = sin 𝜓SH𝑗
(A.4c)

As defined before, 𝑐 is the apparent propagation velocity of the waves inside the soil. It
indicates the speed at which the wave front travels along the horizontal direction and its value
is the same for all of the soil layers. Thus, from Eq. (A.3a) it is possible to determine the
propagation angles of all layers once one of them is fixed (usually the one corresponding
to the bottom unbounded domain). Note that, despite it is not necessary for the SH wave
problem, the definition of 𝑡𝑗 results in the correct sign for the case of SV waves with an angle
of propagation below the critical one [210].

The necessary displacements and components of the stress tensor for the application of
the boundary conditions of the problem are:

𝑢𝑗
𝑦(𝑥, 𝑧) = ̄𝑢𝑗

𝑦(𝑧) e−𝑖𝑘𝑥; ̄𝑢𝑗
𝑦(𝑧) ≡ ̄𝑢𝑗

𝑦( ̄𝑧) = 𝐴𝑗
SH e𝑖𝑘𝑡𝑗 ̄𝑧 + 𝐵𝑗

SH e−𝑖𝑘𝑡𝑗 ̄𝑧 (A.5)

𝜏𝑗
𝑦𝑧(𝑥, 𝑧) = 𝐺𝑗 (

d𝑢𝑗
𝑦

d𝑧 )
= ̄𝜏𝑗

𝑦𝑧(𝑧) e−𝑖𝑘𝑥; ̄𝜏𝑗
𝑦𝑧(𝑧) ≡ ̄𝜏𝑗

𝑦𝑧( ̄𝑧) = i𝑘𝑡𝑗𝐺𝑗 (𝐴𝑗
SH e𝑖𝑘𝑡𝑗 ̄𝑧 − 𝐵𝑗

SH e−𝑖𝑘𝑡𝑗 ̄𝑧
)

(A.6)

Expressing these relations in matrix form results in:

[
̄𝑢𝑗
𝑦( ̄𝑧)
̄𝜏𝑗
𝑦𝑧( ̄𝑧) ] = [

1 1
𝛽𝑗𝐺𝑗 −𝛽𝑗𝐺𝑗 ] [

e𝑖𝑘𝑡𝑗 ̄𝑧 0
0 e−𝑖𝑘𝑡𝑗 ̄𝑧 ] [

𝐴𝑗
SH

𝐵𝑗
SH

] (A.7)

where:

𝛽𝑗 = i𝑘𝑡𝑗 (A.8)

It can be seen that in Eq. (A.7) both positive and negative exponential terms are present.
The positive exponentials can lead to numerical instabilities. Therefore, they must be trans-
formed into negative ones by expressing the displacements produced by the upwards waves
(𝐴𝑗

SH) in terms of the local variable ̃𝑧. This way, each component of the displacement expres-
sion results in:

𝑢𝐴 = e−𝑖𝑘𝑡𝑗 ̃𝑧 𝐴𝑗
SH; 𝑢𝐵 = e−𝑖𝑘𝑡𝑗 ̄𝑧 𝐵𝑗

SH (A.9)

In order to write all expressions in terms of the same variable, the global depth coordinate 𝑧
is used. Thus, the two local depth coordinates can be written as:

̄𝑧 = 𝑧 − 𝑧𝑗−1; ̃𝑧 = 𝑧𝑗 − 𝑧 (A.10)
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With these transformations, Eq. (A.7) results in:

[
̄𝑢𝑗
𝑦( ̄𝑧)
̄𝜏𝑗
𝑦𝑧( ̄𝑧) ] = [

1 1
𝛽𝑗𝐺𝑗 −𝛽𝑗𝐺𝑗 ] [

e−𝑖𝑘𝑡𝑗 (𝑧𝑗−𝑧) 0
0 e−𝑖𝑘𝑡𝑗 (𝑧−𝑧𝑗−1) ] [

𝐴𝑗
SH

𝐵𝑗
SH

] (A.11)

where, now, all exponential terms are negative because, in any layer 𝑗, it is always satisfied
that 𝑧𝑗−1 ≤ 𝑧 ≤ 𝑧𝑗 .

Following the TRM methodology, the next redefinitions are made:

ℰ𝑗(𝑧) = e−𝛽𝑗𝑧 (A.12)

𝑤𝑗
𝑢(𝑧) = ℰ𝑗(𝑧𝑗 − 𝑧)𝐴𝑗

SH (A.13a)

𝑤𝑗
𝑑(𝑧) = ℰ𝑗(𝑧 − 𝑧𝑗−1)𝐵𝑗

SH (A.13b)

where 𝑤𝑗
𝑢 and 𝑤𝑗

𝑑 represent the amplitudes of the upwards and downwards waves at any point
of the layer.

With this change, the previous relation between the displacements and stresses with the
wave amplitudes results in:

[
̄𝑢𝑗
𝑦(𝑧)
̄𝜏𝑗
𝑦𝑧(𝑧) ] = [

1 1
𝛽𝑗𝐺𝑗 −𝛽𝑗𝐺𝑗 ] [

𝑤𝑗
𝑢(𝑧)

𝑤𝑗
𝑑(𝑧) ]

(A.14)

This expression can be expressed in a generic form as:

[
̄𝑢𝑗
𝑦(𝑧)
̄𝜏𝑗
𝑦𝑧(𝑧) ] =

[
𝐻 𝑗

11 𝐻 𝑗
12

𝐻 𝑗
21 𝐻 𝑗

22 ] [
𝑤𝑗

𝑢(𝑧)
𝑤𝑗

𝑑(𝑧) ]
(A.15)

This notation will ease the comparison between the formulations of the SH and SV-P waves.
In order to obtain the values of the amplitudes 𝑤𝑗

𝑢 and 𝑤𝑗
𝑑 , the boundary conditions of the

problem are applied:

Free-surface boundary condition

𝜏1
𝑦𝑧(𝑧𝑜, 𝑥) = 0 → ̄𝜏1

𝑦𝑧(𝑧𝑜) = 0 = 𝛽1𝐺1𝑤1
𝑢(𝑧𝑜) − 𝛽1𝐺1𝑤1

𝑑(𝑧𝑜) (A.16)

𝑤1
𝑑(𝑧𝑜) = 𝑤1

𝑢(𝑧𝑜) (A.17)

which can be expressed in general form as:

𝑤1
𝑑(𝑧𝑜) = 𝑅𝑢

0𝑤1
𝑢(𝑧𝑜); being: 𝑅𝑢

0 = (𝐻1
22)−1 𝐻1

21 = 1 (A.18)
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Boundary conditions in the infinite

Opposite to the zero amplitude conditions assumed in the work of Pak and Guzina [62]
where no waves were reflected back from the unbounded media, for the problem of seismic
incidence, these waves constitute, indeed, the source of excitation. Therefore, these condi-
tions for the studied problem impose a known amplitude for the upwards waves in the last
(deeper) stratum, which can be written as:

𝑤𝑛+1
𝑢 (𝑧𝑛) = 1 (A.19)

Boundary conditions at the layer interfaces

In each interface 𝑗 between the soil layers 𝑗 and 𝑗 + 1, continuity conditions in terms of
displacements and stresses should be satisfied:

{
̄𝑢𝑗
𝑦(𝑧𝑗) = ̄𝑢𝑗+1

𝑦 (𝑧𝑗)
̄𝜏𝑗
𝑦𝑧(𝑧𝑗) = ̄𝜏𝑗+1

𝑦𝑧 (𝑧𝑗)
(A.20)

Substituting the expressions from Eq. (A.14):

{
𝑤𝑗

𝑢(𝑧𝑗) + 𝑤𝑗
𝑑(𝑧𝑗) = 𝑤𝑗+1

𝑢 (𝑧𝑗) + 𝑤𝑗+1
𝑑 (𝑧𝑗)

𝛽𝑗𝐺𝑗𝑤𝑗
𝑢(𝑧𝑗) − 𝛽𝑗𝐺𝑗𝑤𝑗

𝑑(𝑧𝑗) = 𝛽𝑗+1𝐺𝑗+1𝑤𝑗+1
𝑢 (𝑧𝑗) − 𝑤𝑗+1

𝑑 (𝑧𝑗)
(A.21)

Writing these equations in matrix form, and arranging the terms:

[
1 −1

𝛽𝑗+1𝐺𝑗+1 𝛽𝑗𝐺𝑗 ] [
𝑤𝑗+1

𝑑 (𝑧𝑗)
𝑤𝑗

𝑢(𝑧𝑗) ]
= [

1 −1
𝛽𝑗𝐺𝑗 𝛽𝑗+1𝐺𝑗+1 ] [

𝑤𝑗
𝑑(𝑧𝑗)

𝑤𝑗+1
𝑢 (𝑧𝑗) ]

(A.22)

which can be expressed in general form as:

Q𝑗+1
𝑗 [

𝑤𝑗+1
𝑑 (𝑧𝑗)

𝑤𝑗
𝑢(𝑧𝑗) ]

= Q𝑗
𝑗+1 [

𝑤𝑗
𝑑(𝑧𝑗)

𝑤𝑗+1
𝑢 (𝑧𝑗) ]

being: Q𝑝
𝑞 = [

𝐻𝑝
12 −𝐻𝑞

11
𝐻𝑝

22 −𝐻𝑞
12 ] (A.23)

By inverting the left matrix, the interface condition can be written in general terms as:

[
𝑤𝑗+1

𝑑 (𝑧𝑗)
𝑤𝑗

𝑢(𝑧𝑗) ]
=

[
𝑇 𝑑

𝑗 𝑅𝑢
𝑗

𝑅𝑑
𝑗 𝑇 𝑢

𝑗 ] [
𝑤𝑗

𝑑(𝑧𝑗)

𝑤𝑗+1
𝑢 (𝑧𝑗) ]

(A.24)

where 𝑇 𝑑
𝑗 , 𝑇 𝑢

𝑗 , 𝑅𝑑
𝑗 , 𝑅𝑢

𝑗 are the transmission (𝑇 ) and reflection (𝑅) matrices for the upwards
(𝑢) and downwards (𝑑) waves corresponding to the interface 𝑗. These relations between the
different wave amplitudes are depicted in Fig. A.3.

As mentioned before, the terms of the transmission and reflection matrix can be computed
as:

[TR𝑗] =
[

𝑇 𝑑
𝑗 𝑅𝑢

𝑗
𝑅𝑑

𝑗 𝑇 𝑢
𝑗 ]

= [Q
𝑗+1
𝑗 ]

−1
[Q

𝑗
𝑗+1] (A.25)
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Figure A.3: Interpretation of the transmission and reflection matrices for layer interface 𝑗.

being their expressions for the incident SH waves:

[
𝑇 𝑑

𝑗 𝑅𝑢
𝑗

𝑅𝑑
𝑗 𝑇 𝑢

𝑗 ]
= 1

𝛽𝑗𝐺𝑗 + 𝛽𝑗+1𝐺𝑗+1 [
2𝛽𝑗𝐺𝑗 𝛽𝑗𝐺𝑗 − 𝛽𝑗+1𝐺𝑗+1

𝛽𝑗+1𝐺𝑗+1 − 𝛽𝑗𝐺𝑗 2𝛽𝑗+1𝐺𝑗+1 ] (A.26)

Relations between the amplitudes of each strata

In order to obtain the amplitudes at each soil layer in terms of the incident ones, the afore-
mentioned boundary conditions should be combined. Before continuing with this process, it
is important to highlight that, due to their definition, the amplitudes at any point inside the
layer 𝑗 can be expressed in terms of the amplitudes at the top (𝑗 − 1) and lower (𝑗) interfaces
as:

𝑤𝑗
𝑢(𝑧) = ℰ𝑗(𝑧𝑗 − 𝑧)𝑤𝑗

𝑢(𝑧𝑗) (A.27a)

𝑤𝑗
𝑑(𝑧) = ℰ𝑗(𝑧 − 𝑧𝑗−1)𝑤𝑗

𝑑(𝑧𝑗−1) (A.27b)

Combining Eq. (A.27a) with the free-surface boundary condition given by Eq. (A.18)
leads to:

𝑤1
𝑑(𝑧𝑜) = 𝑅𝑢

0 𝑤1
𝑢(𝑧𝑜) = 𝑅𝑢

0 ℰ𝑗(ℎ1) 𝑤1
𝑢(𝑧1) (A.28)

On the other hand, by using the equation corresponding to 𝑤𝑗
𝑢 in the interface conditions

(A.24) applied at the first interface (𝑧1), and using the relation given by Eq. (A.27b):

𝑤1
𝑢(𝑧1) = 𝑅𝑑

1 𝑤1
𝑑(𝑧1) + 𝑇 𝑢

1 𝑤2
𝑢(𝑧1) = 𝑅𝑑

1 ℰ1(ℎ1) 𝑤1
𝑑(𝑧0) + 𝑇 𝑢

1 𝑤2
𝑢(𝑧1) (A.29)

Defining the following auxiliary matrices that combine the effects of reflection and trans-
mission together with the propagation inside the layer:

𝑅𝑢𝑒
0 = 𝑅𝑢

0ℰ1(ℎ1) (A.30)

[
𝑇 𝑑𝑒

𝑗 𝑅𝑢𝑒
𝑗

𝑅𝑑𝑒
𝑗 𝑇 𝑢𝑒

𝑗 ]
=

[
𝑇 𝑑

𝑗 𝑅𝑢
𝑗

𝑅𝑑
𝑗 𝑇 𝑢

𝑗 ] [
ℰ𝑗(ℎ𝑗) 0

0 ℰ𝑗+1(ℎ𝑗+1) ]
(A.31)

substituting (A.28) into (A.29) and solving for 𝑤1
𝑢(𝑧1):

𝑤1
𝑢(𝑧1) = 𝑅𝑑𝑒

1 𝑅𝑢𝑒
0 𝑤1

𝑢(𝑧1) + 𝑇 𝑢
1 𝑤2

𝑢(𝑧1) (A.32)
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(𝐼 − 𝑅𝑑𝑒
1 𝑅𝑢𝑒

0 ) 𝑤1
𝑢(𝑧1) = 𝑇 𝑢

1 𝑤2
𝑢(𝑧1) with: 𝐼 = 1 (A.33)

the expressions that give the amplitudes at the first layer in terms of the ones corresponding
to the second soil layer are obtained as:

{
𝑤1

𝑢(𝑧1) = (𝐼 − 𝑅𝑑𝑒
1 𝑅𝑢𝑒

0 )−1 𝑇 𝑢
1 𝑤2

𝑢(𝑧1) ≡ ̂𝑇 𝑢
1 𝑤2

𝑢(𝑧1)
𝑤1

𝑑(𝑧𝑜) = 𝑅𝑢𝑒
0 𝑤1

𝑢(𝑧1) ≡ 𝑅̂𝑢𝑒
0 𝑤1

𝑢(𝑧1)
(A.34)

In a similar way, combining the between-layer boundary conditions at 𝑧1 and 𝑧2, the
following relations can be obtained for the second layer (𝑗 = 2):

{
𝑤2

𝑢(𝑧2) = ̂𝑇 𝑢
2 𝑤3

𝑢(𝑧2)
𝑤2

𝑑(𝑧1) = 𝑅̂𝑢𝑒
1 𝑤2

𝑢(𝑧2)
(A.35)

Proof. From the equation corresponding to 𝑤𝑗+1
𝑑 in the interface conditions (A.24) applied

at the first interface (𝑧1) and using Eqs. (A.27) and (A.34), it can be obtained that:

𝑤2
𝑑(𝑧1) = 𝑇 𝑑

1 𝑤1
𝑑(𝑧1) + 𝑅𝑢

1 𝑤2
𝑢(𝑧1) =

= 𝑇 𝑑
1 ℰ1(ℎ1) 𝑤1

𝑑(𝑧𝑜) + 𝑅𝑢
1 𝑤2

𝑢(𝑧1) =
= 𝑇 𝑑𝑒

1 𝑅̂𝑢𝑒
0 𝑤1

𝑢(𝑧1) + 𝑅𝑢
1 𝑤2

𝑢(𝑧1) =
= 𝑇 𝑑𝑒

1 𝑅̂𝑢𝑒
0

̂𝑇 𝑢
1 𝑤2

𝑢(𝑧1) + 𝑅𝑢
1 𝑤2

𝑢(𝑧1) =
= (𝑇 𝑑𝑒

1 𝑅̂𝑢𝑒
0

̂𝑇 𝑢
1 + 𝑅𝑢

1) 𝑤2
𝑢(𝑧1) =

= 𝑅̂𝑢
1 ℰ2(ℎ2) 𝑤2

𝑢(𝑧2) ≡ 𝑅̂𝑢𝑒
1 𝑤2

𝑢(𝑧2)

While from the equation corresponding to 𝑤𝑗
𝑢 in the interface conditions (A.24) applied at

𝑧2, together with Eq. (A.27b) and the previous expression it can be obtained that:

𝑤2
𝑢(𝑧2) = 𝑅𝑑

2 𝑤2
𝑑(𝑧2) + 𝑇 𝑢

2 𝑤3
𝑢(𝑧2) =

= 𝑅𝑑
2 ℰ2(ℎ2) 𝑤2

𝑑(𝑧1) + 𝑇 𝑢
2 𝑤3

𝑢(𝑧2) =
= 𝑅𝑑𝑒

2 𝑅̂𝑢𝑒
1 𝑤2

𝑢(𝑧2) + 𝑇 𝑢
2 𝑤3

𝑢(𝑧2) =
= (𝐼 − 𝑅𝑑𝑒

2 𝑅̂𝑢𝑒
1 )−1 𝑇 𝑢

2 𝑤3
𝑢(𝑧2) ≡ ̂𝑇 𝑢

2 𝑤3
𝑢(𝑧2)

Substituting now Eq. (A.35) into (A.34), and with the aid of Eqs. (A.27), it is possible
to express the amplitudes at any point of the first layer in terms of the amplitudes of the third
layer as:

𝑤1
𝑢(𝑧) = ℰ1(𝑧1 − 𝑧) 𝑤1

𝑢(𝑧1) =
= ℰ1(𝑧1 − 𝑧) ̂𝑇 𝑢

1 𝑤2
𝑢(𝑧1) =

= ℰ1(𝑧1 − 𝑧) ̂𝑇 𝑢
1 ℰ2(ℎ2) 𝑤2

𝑢(𝑧2) =
= ℰ1(𝑧1 − 𝑧) ̂𝑇 𝑢𝑒

1
̂𝑇 𝑢
2 𝑤3

𝑢(𝑧2)

(A.36)
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𝑤1
𝑑(𝑧) = ℰ1(𝑧 − 𝑧0) 𝑤1

𝑑(𝑧0) =
= ℰ1(𝑧 − 𝑧0) 𝑅̂𝑢𝑒

0 𝑤1
𝑢(𝑧1)

(A.37)

Where:

[

̂𝑇 𝑑𝑒
𝑗 𝑅̂𝑢𝑒

𝑗

𝑅̂𝑑𝑒
𝑗 ̂𝑇 𝑢𝑒

𝑗 ]
=

[

̂𝑇 𝑑
𝑗 𝑅̂𝑢

𝑗

𝑅̂𝑑
𝑗 ̂𝑇 𝑢

𝑗 ] [
ℰ𝑗(ℎ𝑗) 0

0 ℰ𝑗+1(ℎ𝑗+1) ]
(A.38)

and ̂𝑇 𝑑
𝑗 , ̂𝑇 𝑢

𝑗 , 𝑅̂𝑑
𝑗 , 𝑅̂𝑢

𝑗 are referred to as the generalized transmission and reflection matrices.
Repeating the same procedure for all soil layers, it can be obtained for any layer 𝑗 that:

{
𝑤𝑗

𝑢(𝑧𝑗) = ̂𝑇 𝑢
𝑗 𝑤𝑗+1

𝑢 (𝑧𝑗)
𝑤𝑗

𝑑(𝑧𝑗−1) = 𝑅̂𝑢𝑒
𝑗−1 𝑤𝑗

𝑢(𝑧𝑗)
(A.39)

The generalized transmission and reflection matrices for each layer are computed recur-
sively from the ones corresponding to the upper stratum as:

𝑅̂𝑢
0 = 𝑅𝑢

0 (A.40a)

̂𝑇 𝑢
𝑗 = (𝐼 − 𝑅𝑑𝑒

𝑗 𝑅̂𝑢𝑒
𝑗−1)

−1
𝑇 𝑢

𝑗 (A.40b)

𝑅̂𝑢
𝑗 = 𝑅𝑢

𝑗 + 𝑇 𝑑𝑒
𝑗 𝑅̂𝑢𝑒

𝑗−1
̂𝑇 𝑢
𝑗 (A.40c)

In these expressions, the roots of 𝐼 −𝑅𝑑𝑒
𝑗 𝑅̂𝑢𝑒

𝑗−1 = 0 correspond to the wavenumbers associated
to the generalized Love waves of the layered medium.

This way, the amplitudes of the upwards and downwards waves at any point inside the soil
layer 𝑗 can be expressed in terms of the amplitude of the incident wave as:

⎧
⎪
⎨
⎪
⎩

𝑤𝑗
𝑢(𝑧) = ℰ𝑗(𝑧𝑗 − 𝑧)

𝑛−1
∏
𝑘=𝑗

( ̂𝑇 𝑢𝑒
𝑘 ) ̂𝑇 𝑢

𝑛 𝑤𝑛+1
𝑢 (𝑧𝑛)

𝑤𝑗
𝑑(𝑧) = ℰ𝑗(𝑧 − 𝑧𝑗−1) 𝑅̂𝑢𝑒

𝑗−1 𝑤𝑗
𝑢(𝑧𝑗)

(A.41)

Finally, once these amplitudes are known, the displacements and stresses at the desired
point of the soil domain can be obtained from Eq. (A.14), which, including the dependence
of 𝑥, results in:

𝑢𝑗
𝑦(𝑥, 𝑧) = (𝑤𝑗

𝑢(𝑧) + 𝑤𝑗
𝑑(𝑧)) e−i𝑘𝑥 (A.42)

𝜏𝑗
𝑦𝑧(𝑥, 𝑧) = 𝛽𝑗𝐺𝑗(𝑤𝑗

𝑢(𝑧) − 𝑤𝑗
𝑑(𝑧)) e−i𝑘𝑥 (A.43)

which, again, can be written in general terms as:

[
𝑢𝑗

𝑦(𝑥, 𝑧)
𝜏𝑗

𝑦𝑧(𝑥, 𝑧) ] = H𝑗
[

𝑤𝑗
𝑢(𝑧)

𝑤𝑗
𝑑(𝑧) ]

e−i𝑘𝑥 (A.44)
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A.3 Incident SV-P waves (in-plane problem)
In this section, the expressions presented before for the incident SH waves problem are adapted
in order to obtain the displacements and stresses corresponding to the in-plane problem of
incident SV and P waves. Fig. A.4 depicts the amplitudes of the waves travelling inside each
layer for the studied problem.

Figure A.4: Definition of the waves travelling through each layer. Incident SV-P waves.

Again, the waves propagate inside the 𝑥 − 𝑧 plane but, now, the displacements produced
by them are also inside this plane. The compatibility condition in the 𝑥 direction imposes
that:

𝑐 =
𝑐𝑠𝑗

𝑚𝑗
=

𝑐𝑝𝑗

𝑙𝑗
(A.45a)

𝑘 = 𝜔
𝑐 = 𝜔

𝑐𝑠𝑗

𝑚𝑗 = 𝜔
𝑐𝑝𝑗

𝑙𝑗 (A.45b)

where

𝑚𝑗 = cos 𝜓SV𝑗
(A.46a)

𝑡𝑗 = −i
√

1 − 1
𝑚2

𝑗
≡ tan 𝜓SV𝑗

(A.46b)

𝑚𝑗𝑡𝑗 = sin 𝜓SV𝑗
(A.46c)

𝑙𝑗 = cos 𝜓P𝑗
(A.47a)

𝑠𝑗 = −i
√

1 − 1
𝑙2
𝑗

≡ tan 𝜓P𝑗
(A.47b)

𝑙𝑗𝑠𝑗 = sin 𝜓P𝑗
(A.47c)

As commented for the SH waves, the apparent wave velocity 𝑐 relates all of the propa-
gation angles inside the layered domain. The definition of the tangents 𝑠 and 𝑡 ensures the
correct sign when the propagation angle is below the critical one [210].
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The expressions of the displacements and stresses that are needed for applying boundary
conditions in the in-plane problem are:

𝑢𝑗
𝑥(𝑥, 𝑧) = ̄𝑢𝑗

𝑥(𝑧) e−𝑖𝑘𝑥;

̄𝑢𝑗
𝑥(𝑧) ≡ ̄𝑢𝑗

𝑥( ̄𝑧) = 𝑙𝑗 (𝐴𝑗
P e𝑖𝑘𝑠𝑗 ̄𝑧 + 𝐵𝑗

P e−𝑖𝑘𝑠𝑗 ̄𝑧
) − 𝑚𝑗𝑡𝑗 (𝐴𝑗

SV e𝑖𝑘𝑡𝑗 ̄𝑧 − 𝐵𝑗
SV e−𝑖𝑘𝑡𝑗 ̄𝑧

)
(A.48)

𝑢𝑗
𝑧(𝑥, 𝑧) = ̄𝑢𝑗

𝑧(𝑧) e−𝑖𝑘𝑥;

̄𝑢𝑗
𝑧(𝑧) ≡ ̄𝑢𝑗

𝑧( ̄𝑧) = −𝑙𝑗𝑠𝑗 (𝐴𝑗
P e𝑖𝑘𝑠𝑗 ̄𝑧 − 𝐵𝑗

P e−𝑖𝑘𝑠𝑗 ̄𝑧
) − 𝑚𝑗 (𝐴𝑗

SV e𝑖𝑘𝑡𝑗 ̄𝑧 + 𝐵𝑗
SV e−𝑖𝑘𝑡𝑗 ̄𝑧

)
(A.49)

𝜏𝑗
𝑥𝑧(𝑥, 𝑧) = 𝐺𝑗 (

d𝑢𝑗
𝑥

d𝑧 + d𝑢𝑗
𝑧

d𝑥 )
= ̄𝜏𝑗

𝑥𝑧(𝑧) e−𝑖𝑘𝑥;

̄𝜏𝑗
𝑥𝑧(𝑧) ≡ ̄𝜏𝑗

𝑥𝑧( ̄𝑧) = i2𝑘𝑙𝑗𝑠𝑗𝐺𝑗 (𝐴𝑗
P e𝑖𝑘𝑠𝑗 ̄𝑧 − 𝐵𝑗

P e−𝑖𝑘𝑠𝑗 ̄𝑧
) +

+ i𝑘𝑚𝑗(1 − 𝑡2
𝑗 )𝐺𝑗 (𝐴𝑗

SV e𝑖𝑘𝑡𝑗 ̄𝑧 + 𝐵𝑗
SV e−𝑖𝑘𝑡𝑗 ̄𝑧

)

(A.50)

𝜎𝑗
𝑧𝑧(𝑥, 𝑧) = 2𝐺𝑗

d𝑢𝑗
𝑧

d𝑧 + 𝜆𝑗 (
d𝑢𝑗

𝑥
d𝑥 + d𝑢𝑗

𝑧
d𝑧 )

= 𝜎̄𝑗
𝑧𝑧(𝑧) e−𝑖𝑘𝑥;

𝜎̄𝑗
𝑧𝑧(𝑧) ≡ 𝜎̄𝑗

𝑧𝑧( ̄𝑧) = i𝑘𝑙𝑗(1 − 𝑡2
𝑗 )𝐺𝑗 (𝐴𝑗

P e𝑖𝑘𝑠𝑗 ̄𝑧 + 𝐵𝑗
P e−𝑖𝑘𝑠𝑗 ̄𝑧

) +

− i2𝑘𝑚𝑗𝑡𝑗𝐺𝑗 (𝐴𝑗
SV e𝑖𝑘𝑡𝑗 ̄𝑧 − 𝐵𝑗

SV e−𝑖𝑘𝑡𝑗 ̄𝑧
)

(A.51)

Note that the Lamé constant can be omitted if the following relation is considered:

2𝐺𝑗 + 𝜆𝑗
𝐺𝑗

=
𝑐2

𝑝𝑗

𝑐2
𝑠𝑗

=
𝑙2
𝑗

𝑚2
𝑗

= 𝜅−2
𝑗 (A.52)

Defining:

𝛼𝑗 = i𝑘𝑠𝑗 (A.53a)
𝛽𝑗 = i𝑘𝑡𝑗 (A.53b)
𝛾𝑗 = i𝑘𝑚𝑗(1 − 𝑡2

𝑗 ) (A.53c)

and transforming the depth coordinates ( ̄𝑧, ̃𝑧, 𝑧) as done for the SH wave problem, the depth-
dependent displacements and stresses can be obtained as:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

̄𝑢𝑗
𝑥(𝑧)
̄𝑢𝑗
𝑧(𝑧)
̄𝜏𝑗
𝑥𝑧(𝑧)

𝜎̄𝑗
𝑧𝑧(𝑧)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑙𝑗 −𝑚𝑗𝑡𝑗 𝑙𝑗 𝑚𝑗𝑡𝑗

−𝑙𝑗𝑠𝑗 −𝑚𝑗 𝑙𝑗𝑠𝑗 −𝑚𝑗

2𝛼𝑗𝑙𝑗𝐺𝑗 𝛾𝑗𝐺𝑗 −2𝛼𝑗𝑙𝑗𝐺𝑗 𝛾𝑗𝐺𝑗

𝛾𝑗𝜅−1
𝑗 𝐺𝑗 −2𝛽𝑗𝑚𝑗𝐺𝑗 𝛾𝑗𝜅−1

𝑗 𝐺𝑗 2𝛽𝑗𝑚𝑗𝐺𝑗

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐴𝑗
P e−𝛼𝑗 (𝑧𝑗−𝑧)

𝐴𝑗
SV e−𝛽𝑗 (𝑧𝑗−𝑧)

𝐵𝑗
P e−𝛼𝑗 (𝑧−𝑧𝑗−1)

𝐵𝑗
SV e−𝛽𝑗 (𝑧−𝑧𝑗−1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(A.54)

Now, the definitions that are made in order to follow the TRM methodology have a vec-
torial nature (owing to the two wave types present in the problem) but, in essence, are the
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same transformations that were conducted in the previous section. This way, the exponential
matrix and the upwards and downwards waves amplitudes are defined as:

E𝑗(𝑧) =
[

e−𝛼𝑗𝑧 0
0 e−𝛽𝑗𝑧 ]

(A.55)

w𝑗
𝑢(𝑧) = E𝑗(𝑧𝑗 − 𝑧) [

𝐴𝑗
P

𝐴𝑗
SV

] (A.56a)

w𝑗
𝑑(𝑧) = E𝑗(𝑧 − 𝑧𝑗−1) [

𝐵𝑗
P

𝐵𝑗
SV

] (A.56b)

So, the matrix relation between the displacements and stresses with the transformed am-
plitudes of the travelling waves results in:

⎡
⎢
⎢
⎢
⎢
⎣

̄𝑢𝑗
𝑥(𝑧)
̄𝑢𝑗
𝑧(𝑧)
̄𝜏𝑗
𝑥𝑧(𝑧)

𝜎̄𝑗
𝑧𝑧(𝑧)

⎤
⎥
⎥
⎥
⎥
⎦

=
[

H𝑗
11 H𝑗

12
H𝑗

21 H𝑗
22 ] [

w𝑗
𝑢(𝑧)

w𝑗
𝑑(𝑧) ]

(A.57)

where each sub-matrix H𝑗
𝑝𝑞 is defined following Eq. (A.54).

As done for the SH waves, the next step is to apply boundary conditions:

Free-surface boundary condition

[
̄𝜏1
𝑥𝑧(𝑧0)

𝜎̄1
𝑥𝑧(𝑧0) ] = [

0
0 ] = H1

21 w
1
𝑢(𝑧0) + H1

22 w
1
𝑑(𝑧0) (A.58)

which can be written as:

w1
𝑑(𝑧0) = R𝑢

0 w
1
𝑢(𝑧0) (A.59)

being:

R𝑢
0 = (H1

22)−1
H1

21 = 1
𝛾2

𝑗 + 4𝛼𝑗𝛽𝑗𝑚2
𝑗 [

4𝛼𝑗𝛽𝑗𝑚2
𝑗 − 𝛾2

𝑗 4𝛽𝑗𝛾𝑗𝑚𝑗𝜅𝑗

−4𝛼𝑗𝛾𝑗𝑙𝑗 4𝛼𝑗𝛽𝑗𝑚2
𝑗 − 𝛾2

𝑗 ]
(A.60)

The denominator of this expression is associated with the Rayleigh waves of the free-surface.
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Boundary conditions in the infinite

As done for the SH waves, the amplitudes of the waves at the bottom layer are known as
they constitute the source of energy of the problem. In this case, depending if the incident
wave is a SV or P wave, the amplitudes at the lower interface of the layered domain will be:

w𝑛+1
𝑢 (𝑧𝑛) = [

0
1 ] for incident SV waves o w𝑛+1

𝑢 (𝑧𝑛) = [
1
0 ] for incident P waves

(A.61)

Boundary conditions at the layer interfaces

The continuity conditions at each layer interface 𝑗 are:

⎧⎪
⎪
⎨
⎪
⎪⎩

̄𝑢𝑗
𝑥(𝑧𝑗) = ̄𝑢𝑗+1

𝑥 (𝑧𝑗)
̄𝑢𝑗
𝑧(𝑧𝑗) = ̄𝑢𝑗+1

𝑧 (𝑧𝑗)
̄𝜏𝑗
𝑥𝑧(𝑧𝑗) = ̄𝜏𝑗+1

𝑥𝑧 (𝑧𝑗)
𝜎̄𝑗

𝑧𝑧(𝑧𝑗) = 𝜎̄𝑗+1
𝑧𝑧 (𝑧𝑗)

(A.62)

which can be expressed in matrix form and in terms of the wave amplitudes as:

Q𝑗+1
𝑗 [

w𝑗+1
𝑑 (𝑧𝑗)
w𝑗

𝑢(𝑧𝑗) ]
= Q𝑗

𝑗+1 [
w𝑗

𝑑(𝑧𝑗)
w𝑗+1

𝑢 (𝑧𝑗) ]
being: Q𝑝

𝑞 = [
H𝑝

12 −H𝑞
11

H𝑝
22 −H𝑞

12 ] (A.63)

Inverting the first matrix, the transmission and reflection matrices for the SV-P waves are
obtained in the form:

[
w𝑗+1

𝑑 (𝑧𝑗)
w𝑗

𝑢(𝑧𝑗) ]
=

[
T𝑑

𝑗 R𝑢
𝑗

R𝑑
𝑗 T𝑢

𝑗 ] [
w𝑗

𝑑(𝑧𝑗)
w𝑗+1

𝑢 (𝑧𝑗) ]
being:

[
T𝑑

𝑗 R𝑢
𝑗

R𝑑
𝑗 T𝑢

𝑗 ]
= (Q

𝑗+1
𝑗 )

−1
Q𝑗

𝑗+1

(A.64)

Note that now each transmission and reflection matrix is of size 2 × 2 instead of a scalar
value. Their close-form expressions are not detailed owing their complexity, but they share
a common denominator which is related to the Stoneley waves of the layered media. For the
developed model, the values of these matrices can be obtained numerically from the matrices
Q𝑝

𝑞.

Relations between the amplitudes of each strata

If the same steps presented for the SH waves are followed (just caring about the change
in the dimension of the variables) it is possible to obtain the expressions of the generalized
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transmission and reflection matrices for each layer 𝑗 as:

R𝑢
0 = R𝑢

0 (A.65a)

T𝑢
𝑗 = (I − R𝑑𝑒

𝑗 R𝑢𝑒
𝑗−1)

−1
T𝑢

𝑗 (A.65b)

R𝑢
𝑗 = R𝑢

𝑗 + T𝑑𝑒
𝑗 R𝑢𝑒

𝑗−1 T
𝑢
𝑗 (A.65c)

where I is now the identity 2 × 2 matrix, and the matrices that include the exponential terms
are defined in the same manner than for the SH waves as:

R𝑢𝑒
0 = R𝑢

0E1(ℎ1) (A.66)

[
T𝑑𝑒

𝑗 R𝑢𝑒
𝑗

R𝑑𝑒
𝑗 T𝑢𝑒

𝑗 ]
=

[
T𝑑

𝑗 R𝑢
𝑗

R𝑑
𝑗 T𝑢

𝑗 ] [
E𝑗(ℎ𝑗) 0

0 E𝑗+1(ℎ𝑗+1) ]
(A.67)

[
T𝑑𝑒

𝑗 R𝑢𝑒
𝑗

R𝑑𝑒
𝑗 T𝑢𝑒

𝑗 ]
=

[
T𝑑

𝑗 R𝑢
𝑗

R𝑑
𝑗 T𝑢

𝑗 ] [
E𝑗(ℎ𝑗) 0

0 E𝑗+1(ℎ𝑗+1) ]
(A.68)

The amplitudes at the interfaces of each layer can be obtained in terms of the amplitudes
corresponding to the bottom layer as:

{
w𝑗

𝑢(𝑧𝑗) = T𝑢
𝑗 w

𝑗+1
𝑢 (𝑧𝑗)

w𝑗
𝑑(𝑧𝑗−1) = R𝑢𝑒

𝑗−1 w
𝑗
𝑢(𝑧𝑗)

(A.69)

At any point inside the layer, the amplitudes of the upwards and downwards waves can be
obtained from their values at the upper and lower interfaces as:

w𝑗
𝑢(𝑧) = E𝑗(𝑧𝑗 − 𝑧) w𝑗

𝑢(𝑧𝑗) (A.70a)

w𝑗
𝑑(𝑧) = E𝑗(𝑧 − 𝑧𝑗−1) w𝑗

𝑢(𝑧𝑗−1) (A.70b)

and, also, can be obtained in terms of the known amplitude of the incident waves at the last
layer as:

⎧
⎪
⎨
⎪
⎩

w𝑗
𝑢(𝑧) = E𝑗(𝑧𝑗 − 𝑧)

𝑛−1
∏
𝑘=𝑗

(T𝑢𝑒
𝑘 ) T𝑢

𝑛 w
𝑛+1
𝑢 (𝑧𝑛)

w𝑗
𝑑(𝑧) = E𝑗(𝑧 − 𝑧𝑗−1) R𝑢𝑒

𝑗−1 w
𝑗
𝑢(𝑧𝑗)

(A.71)

Finally, once the desired amplitudes are known, the displacements and stresses at that
point of the layered domain is obtained from:

⎡
⎢
⎢
⎢
⎢
⎣

𝑢𝑗
𝑥(𝑥, 𝑧)

𝑢𝑗
𝑧(𝑥, 𝑧)

𝜏𝑗
𝑥𝑧(𝑥, 𝑧)

𝜎𝑗
𝑧𝑧(𝑥, 𝑧)

⎤
⎥
⎥
⎥
⎥
⎦

= H𝑗
[

w𝑗
𝑢(𝑧)

w𝑗
𝑑(𝑧) ]

e−𝑖𝑘𝑥 (A.72)
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A.4 Generic incident waves
Despite in the two previous sections the in-plane and out-of-plane problems are treated inde-
pendently, they can be merged into one single formulation if the proper redefinitions of w𝑗

𝑢,
w𝑗

𝑑 , E𝑗 and H𝑗 are considered:

E𝑗(𝑧) =
⎡
⎢
⎢
⎢
⎣

e−𝛼𝑗𝑧 0 0
0 e−𝛽𝑗𝑧 0

0 0 e−𝛽SH
𝑗 𝑧

⎤
⎥
⎥
⎥
⎦

(A.73)

w𝑗
𝑢(𝑧) = E𝑗(𝑧𝑗 − 𝑧)

⎡
⎢
⎢
⎣

𝐴𝑗
P

𝐴𝑗
SV

𝐴𝑗
SH

⎤
⎥
⎥
⎦

(A.74a)

w𝑗
𝑑(𝑧) = E𝑗(𝑧 − 𝑧𝑗−1)

⎡
⎢
⎢
⎣

𝐵𝑗
P

𝐵𝑗
SV

𝐵𝑗
SH

⎤
⎥
⎥
⎦

(A.74b)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

̄𝑢𝑗
𝑥(𝑧)
̄𝑢𝑗
𝑧(𝑧)
̄𝑢𝑗
𝑦(𝑧)
̄𝜏𝑗
𝑥𝑧(𝑧)

𝜎̄𝑗
𝑧𝑧(𝑧)
̄𝜏𝑗
𝑦𝑧(𝑧)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= H𝑗
[

w𝑗
𝑢(𝑧)

w𝑗
𝑑(𝑧) ]

where now: H𝑗
𝑝𝑞 =

⎡
⎢
⎢
⎣

H𝑗P-SV
𝑝𝑞 02×1

01×2 H𝑗SH
𝑝𝑞

⎤
⎥
⎥
⎦

(A.75)

This way, all the expressions presented in the previous sections are still valid (with the
proper dimensions changes), as they have been introduced in terms of these four variables.
Obviously, the two wave problems remain uncoupled, so the obtained matrices will be formed
by the sub-matrices corresponding to the SV-P and SH problems presented before.

A.5 Numerical aspects
A.5.1 Vertical incidence
The formulation presented in this appendix is also valid for vertically propagating waves.
However, it should be carefully handled because for propagation angles equal to 90𝑜 the cor-
responding cosines 𝑚𝑗 (for S waves) or 𝑙𝑗 (for P waves) are equal to zero. These terms appear
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in the denominator of the apparent velocity 𝑐 (which does not properly exist for the verti-
cal incidence problem), and in the definition of the tangents 𝑡𝑗 or 𝑠𝑗 (which are infinite for
this propagation angle). These aspects can lead to numerical singularities. In order to avoid
them, and to obtain a routine that can be used for the vertical incidence problem, the following
considerations should be made:

• Define 𝑘 directly as:

𝑘 = 𝜔
𝑐𝑠𝑗

𝑚𝑗 or 𝑘 = 𝜔
𝑐𝑝𝑗

𝑙𝑗 (A.76)

instead of 𝑘 = 𝜔/𝑐. This way, this term will vanish when it appears alone in the ex-
pressions.

• Use variables for the sines instead of the ones of the tangents. Note that in the obtained
formulation, the terms of the tangents (𝑡𝑗 , 𝑠𝑗) do never appear alone, but always are
multiplied by the corresponding cosine (sometimes directly and other times through
𝑘). This way, instead of saving variables with the value of 𝑡𝑗 or 𝑠𝑗 , directly the value of
𝑚𝑗𝑡𝑗 or 𝑙𝑗𝑠𝑗 should be stored. These new variables will present a unitary value for the
vertical incidence, and their expressions for an arbitrary propagation angle are:

𝑚𝑗𝑡𝑗 = −𝑖√𝑚2
𝑗 − 1 and 𝑙𝑗𝑠𝑗 = −𝑖√𝑙2

𝑗 − 1 (A.77)

Taking these considerations into account for the definition of the matrices H𝑗 and the
coefficients 𝛼𝑗 , 𝛽𝑗 , and 𝛾𝑗 , the singularities corresponding to the vertical incidence can be
completely avoided.

A.5.2 Routine pseudo-algorithm
In order to compute the displacements produced by the incident field, the process is divided
into two stages:

Stage 1: Computation of the amplitudes at each interface

The amplitudes will be stored in two variables 𝑊𝑈(∶, 𝑗) ≡ w𝑗
𝑢(𝑧𝑗) and 𝑊𝐷(∶, 𝑗) ≡

w𝑗
𝑑(𝑧𝑗−1) which will contain the amplitudes at the interfaces needed to compute the displace-

ments inside the 𝑛 layers of interest (the bottom unbounded layer is not considered). The
process is:

1. define w𝑛+1
𝑢 (𝑧𝑛) depending on the incident wave

2. compute 𝑊𝑈(∶, 𝑛) and 𝑊𝐷(∶, 𝑛) for the deepest finite layer from Eq. (A.69) and the
previous known amplitude:

{
w𝑛

𝑢(𝑧𝑛) = T𝑢
𝑛 w

𝑛+1
𝑢 (𝑧𝑛) → 𝑊𝑈(∶, 𝑛) = T𝑢

𝑛 w
𝑛+1
𝑢 (𝑧𝑛)

w𝑛
𝑑(𝑧𝑛−1) = R𝑢𝑒

𝑛−1 w
𝑛
𝑢(𝑧𝑛) → 𝑊𝐷(∶, 𝑛) = R𝑢𝑒

𝑛−1 𝑊𝑈(∶, 𝑛)
(A.78)
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3. iteratively for each layer 𝑗 from 𝑛 − 1 to 1, compute 𝑊𝑈(∶, 𝑗) and 𝑊𝐷(∶, 𝑗) from Eqs.
(A.69) and (A.70):

{
w𝑗

𝑢(𝑧𝑗) = T𝑢𝑒
𝑗 w𝑗+1

𝑢 (𝑧𝑗+1) → 𝑊𝑈(∶, 𝑗) = T𝑢𝑒
𝑗 𝑊𝑈(∶, 𝑗 + 1)

w𝑗
𝑑(𝑧𝑗−1) = R𝑢𝑒

𝑗−1 w
𝑗
𝑢(𝑧𝑗) → 𝑊𝐷(∶, 𝑗) = R𝑢𝑒

𝑗−1 𝑊𝑈(∶, 𝑗)
(A.79)

Stage 2: Computation of the displacements at the desired point

To obtain the displacements at any point (𝑥, 𝑧) belonging to the layer 𝑗 (𝑧𝑗−1 ≤ 𝑧 < 𝑧𝑗),
first the amplitudes at the desired point are computed through Eq. (A.70):

{
w𝑗

𝑢(𝑧) = E𝑗(𝑧𝑗 − 𝑧) w𝑗
𝑢(𝑧𝑗) → w𝑗

𝑢(𝑧) = E𝑗(𝑧𝑗 − 𝑧) 𝑊𝑈(∶, 𝑗)
w𝑗

𝑑(𝑧) = E𝑗(𝑧 − 𝑧𝑗−1) w𝑗
𝑢(𝑧𝑗−1) → w𝑗

𝑑(𝑧) = E𝑗(𝑧 − 𝑧𝑗−1) 𝑊𝐷(∶, 𝑗)
(A.80)

and then, the displacements are obtained from Eq. (A.72).
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Section 2.3.2.2 presented the procedure that is used in the proposed model to compute the
influence matrix 𝐆 needed in the soil equations. It is based on the similarities between the
sub-matrices corresponding to equivalent collocation-observation pile pairs. In the afore-
mentioned section, the procedure was detailed and the reduction in the number of collocation-
observation pile pairs required for different regular configurations of piles was given as an
example. In order to complete this information, and to give an insight into the savings in
computational time that the proposed methodology implies, in this appendix two different
problems are considered. For each scenario, the running times required for obtaining the
foundation response both considering or not the reuse of influence sub-matrices are com-
pared. The two problems, referred to as Case A and Case B, are sketched in Fig. B.1 and
correspond to situations in which the fundamental solution is easily or slowly computed, re-
spectively.

Figure B.1: Cases considered for the analysis of the savings in the computational time due to
the reuse of influence sub-matrices.

The two cases correspond to a seismic problem, in which vertically incident shear waves
impinge over the studied site. Case A represents a pile foundation embedded in a soil layer
over a rigid bedrock. Pile tips are assumed to be hinged to the rigid stratum. The excitation
frequency coincides with the fundamental frequency of the soil stratum. The assumed prop-
erties for piles and soil lead to a dimensionless frequency 𝑎𝑜 = 0.03, which is a relatively low
value with respect to the typical frequency range used for studying pile foundations.

On the other hand, Case B corresponds to a pile foundation embedded in a variable soil
profile in which the soil Young’s modulus linearly increases with depth along the piles (from
0.1𝐸𝑠 at the free-surface level to 𝐸𝑠 at the pile tip) and remains constant for the underlying
half space. The variable profile is discretized by using 60 homogeneous layers with the same
thickness. For this problem, a relatively high excitation frequency is assumed (𝑎𝑜 = 1, the
value of the shear wave velocity at the pile tip level is used to define the dimensionless fre-
quency). The high value of the frequency and the complexity of the soil profile make that,
in this situation, the computation of the fundamental solution presents a slow convergence
velocity.
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Case Group single 𝟐 × 𝟐 𝟑 × 𝟑 𝟒 × 𝟒 𝟔 × 𝟔 𝟏𝟎 × 𝟏𝟎

A Without reuse 0.4 s 0.9 s 2.7 s 6.6 s 30 s 3.5 min
With reuse 0.4 s 0.5 s 0.7 s 1.0 s 2.5 s 11 s

B Without reuse 0.6 s 2.1 s 9.3 s 33 s 3.6 min 42 min
With reuse 0.6 s 1.2 s 2.8 s 5.8 s 15 s 61 s

Table B.1: Times required to obtain the response of the foundation at the considered fre-
quency. Regular pile groups.

In the two studied cases, different regular pile groups with vertical elements are consid-
ered. The piles are equally spaced with a centre-to-centre separation ratio 𝑠/𝑑 = 5 and are
distributed in squared 𝑁 × 𝑁 groups. For all groups, 10 elements per pile are used in order
to obtain the results.

The computational times required to obtain the response of the foundation for the two
cases by incorporating or not the reuse of influence sub-matrices are compared in Table B.1.
Note that the displayed times include both the assembly and solving of the required system of
equations, being the time needed for the assembly process significantly larger. As expected,
the times corresponding to Case B are much larger than the ones of Case A. Comparing
the times with and without the reuse of influence sub-matrices, it is found that the proposed
procedure allows saving a significant amount of time. Of course, for the single pile config-
uration there is no difference between the computed times as only one possible collocation-
observation pair exists, but even for the smallest 2 × 2 group the computational time is halved
if the proposed methodology is followed. As the number of piles in the group grows, the run-
ning time is vastly reduced by the proposed strategy, changing even its scale from minutes
to seconds for the larger configurations. Note that these times are the ones required to solve
the system at the assumed frequency. Normally, a set of 20-40 frequency values is needed
in order to adequately determine the behaviour of the foundation in the frequency range of
interest. Thus, the savings in time produced by the proposed methodology become even more
important.

The computational times are also presented in Fig. B.2 for a clearer comparison. The
required time with and without the reuse of influence sub-matrices are presented as functions
of the number of piles in the group (which is directly proportional to the number of pile
elements). The two studied cases are plotted separately. Attending to the curves, it is found
that the order of the computational time falls from 𝒪(𝑁2) to 𝒪(𝑁) if the reuse of influence
sub-matrices is included.

The results presented in this Appendix have been obtained by using a parallel version of
the developed integral model run in a 28 cores (Intel® Xeon® CPU E5-2690 v4 @ 2.60GHz),
260 GB RAM computer.
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Figure B.2: Computational time required to obtain the response of the foundation at the con-
sidered frequency. Regular pile groups.
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C

C.1 Introduction
This appendix presents a Beam-on-Dynamic-Winkler-Foundation (BDWF) model that can
be used to analyse the influence of the tangential tractions arising in the soil-pile interface on
the seismic response of piles. Although the BDWF model was initially designed (and still
used) for studying beams resting over the soil [211–213], it also has an important application
in the modelling of embedded piles [214–216] and the computation of their seismic response
[94, 99, 109, 217–220].

In the Winkler models, the interaction between soil and pile is often reduced to the lateral
stiffness of the soil (the soil reaction against the horizontal displacements of the pile). Nev-
ertheless, in addition to the lateral soil reactions, tangential tractions can also arise along the
soil-pile interface depending on the terrain characteristics. Regarding the Winkler formula-
tion, the additional loads that those tangential stresses produce into the pile can be represented
as distributed moments [221]. This approach is followed in the present work, distinguishing
and detailing the different components of the distributed moment: the one related to the ro-
tation of the pile cross-section and the one related to the action of the incident field.

C.2 Problem definition
The problem represented by the BDWF model corresponds to a single pile of length 𝐿 and
diameter 𝑑 embedded in a (in general) layered half space. Fig. C.1(a) sketches the problem.
Along this appendix, the properties that determine the dynamic behaviour of the pile are
denoted as: Young’s modulus 𝐸, density 𝜌, Poisson’s ratio 𝜈, shear modulus 𝐺, area 𝐴,
moment of inertia 𝐼 and shear coefficient 𝛼 (Timoshenko’s beam theory). No damping is
assumed for the pile in the Winkler model.

Figure C.1: (a) Problem under study. (b) Tangential tractions due to the incident field. (c)
Normal and tangential tractions due to a horizontal displacement of the pile cross-section.
(d) Tangential tractions due to a rotation of the pile cross-section.
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The soil domain is composed by a finite number of homogeneous viscoelastic layers rest-
ing over a half space. Each layer 𝑗 of the soil profile has the following properties: Young’s
modulus 𝐸𝑗

𝑠 , density 𝜌𝑗
𝑠, Poisson’s ratio 𝜈𝑗

𝑠 , shear modulus 𝐺𝑗
𝑠, shear wave propagation veloc-

ity 𝑐𝑗
𝑠 and hysteretic damping coefficient 𝛽𝑗

𝑠 . The portion of the pile length that crosses each
soil layer is denoted as ℎ𝑗 .

The system is excited by planar shear waves that propagate vertically through the soil
acting in the 𝑥 direction. For each layer, the horizontal displacements that this incident field
generates are obtained through the expression:

𝑢𝑗
𝐼 (𝑧) = 𝐴𝑗

𝐼ei𝑘𝑗
𝐼 𝑧 + 𝐵𝑗

𝐼e−i𝑘𝑗
𝐼 𝑧 (C.1)

where 𝐴𝑗
𝐼 , 𝐵𝑗

𝐼 are the amplitudes of the incident and reflected waves for layer 𝑗 obtained by
solving the one-dimensional wave propagation problem; 𝑘𝑗

𝐼 = 𝜔/𝑐𝑗
𝑠 is the wave number; i is

the imaginary unit; 𝜔 is the angular frequency; and the term ei𝜔𝑡 is omitted for simplicity’s
sake as done in the rest of the document.

C.3 Loads acting over the soil-pile interface
The soil-pile interaction along the pile shaft is produced through the horizontal (𝑡𝑥) and tan-
gential (𝑡𝑧) tractions acting between them. The firsts, produced by the contribution of the
normal tractions (𝑡𝑟) and the horizontal component of the tangential tractions (𝑡𝜑), see Fig.
C.1(c), are the ones of most importance. Nevertheless, the vertical tangential tractions (hence-
forth referred to just as tangential tractions), can also have an important role in the seismic
response of the pile.

The soil-pile horizontal tractions are modelled in BDWF formulations through the soil
lateral stiffness, that will be denoted as 𝐾𝑥. These tractions, proportional to the horizontal
relative displacement between pile and soil, constitute the main excitation of the beam. Thus,
this component has to be always included into any Winkler model for the analysis of pile
foundations.

On the other hand, the effects of the tangential stresses are usually not considered in
BDWF models, or only the distributed moment produced by the rotation of the cross-section
is included, see Fig. C.1(d). However, it can be found (see Section 2.8) that this component
does not represent the whole tangential tractions that participate in the problem of vertically
incident S-waves. In order to completely reproduce the response obtained by rigorous contin-
uous models, the effects of the tangential stresses originated by the distortion of the incident
field must also be considered.

Loads due to the incident field

Attending to the expression of the incident field (Eq. C.1), and omitting the soil layer
super-index 𝑗 for clarity’s sake, the only term that does not vanish from the stress tensor 𝜎𝐼
is:

𝜏𝑥𝑧𝐼 (𝑧) = 2𝐺𝑠𝜀𝑥𝑧𝐼 = 𝐺𝑠
d𝑢𝐼
d𝑧 (C.2)
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At a point of the soil-pile interface defined by the angle 𝜑 and with a normal vector 𝐧 =
(cos 𝜑, sin 𝜑, 0), see Fig. C.1(b), the traction vector 𝐭𝐼 is obtained as:

𝐭𝐼 (𝑧, 𝜑) = 𝜎𝐼𝐧 = (0, 0, 𝜏𝑥𝑧𝐼 cos 𝜑) (C.3)

This vertical tangential traction produces a moment 𝑚𝑦 around the 𝑦 axis equal to:

𝑚𝑦(𝑧, 𝜑) = −𝑟𝑥𝑡𝑧𝐼 = −𝑟𝜏𝑥𝑧𝐼 cos2𝜑 (C.4)

where 𝑟 is the pile radius. Note that the moment is negative according to the sign criteria
assumed.

The total distributed moment 𝑚𝐼 acting over the pile cross-section can be finally obtained
by integrating the punctual moment 𝑚𝑦 over the soil-pile interface:

𝑚𝐼 (𝑧) = ∫
2𝜋

0
𝑚𝑦𝑟d𝜑 = −𝜋𝑟2𝜏𝑥𝑧𝐼 = −𝜋𝑟2𝐺𝑠

d𝑢𝐼
d𝑧 (C.5)

By defining 𝐾𝐼 = 𝜋𝑟2𝐺𝑠, one can express this distributed moment in a similar way than
the Winkler’s distributed soil reactions:

𝑚𝐼 (𝑧) = −𝐾𝐼
d𝑢𝐼
d𝑧 (C.6)

On the other hand, considering the pile cross-section at tip level (𝑧 = 𝐿) with a normal
defined by 𝐧 = (0, 0, 1), the traction vector 𝐭𝐿

𝐼 is equal to:

𝐭𝐿
𝐼 = 𝜎𝐼𝐧 = (𝜏𝐿

𝑥𝑧𝐼 , 0, 0) (C.7)

where super-index 𝐿 indicates that the variable is evaluated at the end of the pile.
Integrating this horizontal component of the traction vector over the pile tip surface, the

shear force produced at the end of the pile due to action of the incident field results in:

𝑉 𝐿
𝐼 = ∬𝐴

𝑡𝐿
𝑥𝐼 d𝐴 = 𝜋𝑟2𝜏𝐿

𝑥𝑧𝐼 = 𝜋𝑟2𝐺𝑠
d𝑢𝐼
d𝑧 |

𝐿
(C.8)

C.4 Formulation of the Winkler model
The general differential equation that describes the dynamic lateral response of the pile sub-
jected to lateral distributed forces and moments due to seismic excitation is obtained in this
section. The pile is modelled as a Timoshenko’s beam and the different components of those
loads are defined in order to include all phenomena that take place in the problem under study.
The result of this procedure is a BDWF model that can be used to estimate the pile response
(lateral displacements, rotations, shear forces and bending moments), which is sketched in
Fig. C.2(b) for each layer of the soil profile.

The forces acting over a differential element of the beam are represented in Fig. C.2(a).
The translational and rotatory inertia of the beam are included in the terms 𝑞 and 𝑚 together
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Figure C.2: (a) Forces and moments acting over a differential element of the beam. (b) BDWF
model for a pile embedded in a soil layer. (c) Winkler’s soil impedance terms for different
deformation modes.

with the distributed external forces and moments acting over it. Attending to this, the equi-
librium equations of the beam differential element results in:

d𝑉
d𝑧 + 𝑞 = 0 (C.9a)

d𝑀
d𝑧 + 𝑉 + 𝑚 = 0 (C.9b)

The Timoshenko’s beam theory includes the effects of the warping of the beam cross-
section produced by the shear stresses by assuming a constant value of the beam shear distor-
tion 𝛾𝑥𝑧. The constitutive laws that determine the Timoshenko’s beam bending moment (𝑀)
and shear force (𝑉 ) are:

𝑀 = 𝐸𝐼 d𝜃
d𝑧 (C.10a)

𝑉 = 𝛼𝐺𝐴𝛾𝑥𝑧 = 𝛼𝐺𝐴 (
d𝑢
d𝑧 − 𝜃) (C.10b)

where 𝑢 is the lateral displacement of the beam and 𝜃 is the rotation of the beam cross-section
produced only by the flexural effects.

Substituting the constitutive laws (C.10) in the equilibrium equations (C.9) and after some
simple operations, the differential equation that governs the lateral displacements of the beam
results in:

d4𝑢
d𝑧4 + 1

𝛼𝐺𝐴
d2𝑞
d𝑧2 − 𝑞

𝐸𝐼 + 1
𝐸𝐼

d𝑚
d𝑧 = 0 (C.11)

While the beam rotation can be expressed in terms of the horizontal displacement as:

𝜃 = 𝐸𝐼
𝛼𝐺𝐴 [

d3𝑢
d𝑧3 + 𝛼𝐺𝐴

𝐸𝐼
d𝑢
d𝑧 + 1

𝛼𝐺𝐴
d𝑞
d𝑧 + 1

𝐸𝐼 𝑚] (C.12)

Up to this point, the general expressions of the distributed load 𝑞 and moment 𝑚 have
been used. Considering now the different phenomena that participate in the studied problem,
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and omitting the soil layer super-index 𝑗 for clarity’s sake, the components of the distributed
lateral force acting over the beam are:

𝑞 = 𝜌𝐴𝜔2𝑢 + 𝐾𝑥 (𝑢𝐼 − 𝑢) (C.13)

• 𝜌𝐴𝜔2𝑢: distributed force due to the translational inertia of the beam.

• 𝐾𝑥 (𝑢𝐼 − 𝑢): distributed force produced by the soil lateral impedance 𝐾𝑥. This force
is produced by the relative lateral displacement between the beam and the soil.

While the different components of the distributed moment are:

𝑚 = 𝜌𝐼𝜔2𝜃 − 𝐾𝜃𝜃 − 𝐾𝐼
d𝑢𝐼
d𝑧 (C.14)

• 𝜌𝐼𝜔2𝜃: distributed moment due the rotational inertia of the beam cross-section.

• −𝐾𝜃𝜃: distributed moment associated with the soil rocking impedance 𝐾𝜃. This mo-
ment is produced by the tangential tractions that arise in the soil-pile interface when
the cross-section rotates.

• 𝑚𝐼 = −𝐾𝐼 d𝑢𝐼 /d𝑧: distributed moment produced by the tangential tractions that arise
in the soil-pile interface due to the action of the incident field.

At this point it is worthy to highlight that the particular feature of the proposed formulation
is the approach followed for obtaining this distributed moment produced by the action of the
tangential tractions arising due to the incident field. Despite its relevance, this component is
not normally considered in the Winkler models used to study the soil-pile seismic problem,
or are treated in a completely different way such as the one proposed by Gerolymos and
Gazetas [221]. In their work, they included this distributed moment produced by the soil-pile
interaction directly by extending the kinematic relation of the horizontal component 𝐾𝑥(𝑢𝐼 −
𝑢) to the rocking motion of the pile 𝐾𝜃(d𝑢𝐼 /d𝑧 − 𝜃). On the other hand, in the proposed
formulation, the distributed moment produced by the incident field is obtained in a rigorous
approach from the elastodynamic equations of the incident field. This way, the contribution of
the incident field distributed moment is separated from the one produced by the soil reaction
against the rotation of the pile. Note that this cannot be done for the horizontal component,
as there are no resultant forces acting over the pile when the tractions of the incident field are
integrated.

Fig. C.2(c) illustrates the different Winkler’s soil impedances considered and the defor-
mation modes associated with them. The expressions of the lateral and rocking soil impedances
proposed by Novak et al. [222] are used. This set of soil impedances are chosen over other
options (e.g., [113,214,219,223]) because they are obtained through an analytical procedure
and have explicit expressions that do not depend on heuristic parameters.

Now, including the expressions of the distributed force (C.13) and moment (C.14) in Eqs.
(C.11) and (C.12), and after some algebraic operations, the differential equation of the beam
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lateral displacement can be expressed in terms of the dimensionless axial coordinate 𝜉 =
𝑧𝑗 /ℎ𝑗 as:

d4𝑢
d𝜉4 − (𝜅1 + 𝜅2)

d2𝑢
d𝜉2 + 𝜅1 (𝜅2 + 𝜅3) 𝑢 = 𝜅4 (𝜅2 + 𝜅3) 𝑢𝐼 − (𝜅4 − 𝜅5)

d2𝑢𝐼
d𝜉2 (C.15)

where 𝜅1−4 are a set of dimensionless properties that can be defined in order to write the
formulation in a more compact way:

𝜅1 = (ℎ)2 (𝐾𝑥 − 𝜌𝐴𝜔2) /𝛼𝐺𝐴 (C.16a)
𝜅2 = (ℎ)2 (𝐾𝜃 − 𝜌𝐼𝜔2) /𝐸𝐼 (C.16b)
𝜅3 = (ℎ)2𝛼𝐺𝐴/𝐸𝐼 (C.16c)
𝜅4 = (ℎ)2𝐾𝑥/𝛼𝐺𝐴 (C.16d)
𝜅5 = (ℎ)2𝐾𝐼 /𝐸𝐼 (C.16e)

The solution that satisfies this differential equation can be obtained as the sum of the
homogeneous and particular terms following the expression:

𝑢(𝜉) = 𝐶1 e𝜉𝑠1 + 𝐶2 e𝜉𝑠2 + 𝐶3 e𝜉𝑠3 + 𝐶4 e𝜉𝑠4 + 𝐶𝑃 𝑢𝐼 (𝜉) (C.17)

where 𝑠1−4 are the roots of the homogeneous equation:

𝑠1−4 = ±√
(𝜅1 + 𝜅2) ± √(𝜅1 + 𝜅2)2 − 4𝜅1(𝜅2 + 𝜅3)

2 (C.18)

𝐶𝑃 is the amplitude of the particular solution related to the dynamic loading (incident field):

𝐶𝑃 = 𝜅4(𝜅2 + 𝜅3) + (𝑘𝐼 )2(𝜅4 − 𝜅5)
(𝑘𝐼 )4 + (𝑘𝐼 )2(𝜅1 + 𝜅2) + 𝜅1(𝜅2 + 𝜅3)

(C.19)

and 𝐶1−4 are the amplitudes of the homogeneous solution that are computed by imposing
boundary conditions.

Once the pile lateral displacements are known, by including the expressions of the dis-
tributed loads (C.13), (C.14) into Eqs. (C.10) and (C.12) , the rotation of the cross-section,
bending moment and shear force can be obtained as functions of the dimensionless axial
coordinate as:

𝜃(𝜉) = 1/ℎ
𝜅2 + 𝜅3 [

d3𝑢
d𝜉3 − (𝜅1 − 𝜅3)

d𝑢
d𝜉 + (𝜅4 − 𝜅5)

d𝑢𝐼
d𝜉 ] (C.20)

𝑀(𝜉) = 𝐸𝐼/(ℎ)2

𝜅2 + 𝜅3 [
d4𝑢
d𝜉4 − (𝜅1 − 𝜅3)

d2𝑢
d𝜉2 + (𝜅4 − 𝜅5)

d2𝑢𝐼
d𝜉2 ]

(C.21)

𝑉 (𝜉) = −𝛼𝐺𝐴/ℎ
𝜅2 + 𝜅3 [

d3𝑢
d𝜉3 − (𝜅1 + 𝜅2)

d𝑢
d𝜉 + (𝜅4 − 𝜅5)

d𝑢𝐼
d𝜉 ] (C.22)
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As mentioned before, in order to obtain the amplitudes of the homogeneous solution 𝐶1−4,
proper boundary conditions have to be imposed at the pile top and bottom levels. For the
comparison presented in Section 2.8, and coinciding with the general assumptions, free dis-
placement and fixed rotation conditions are imposed at pile head: 𝜃(0) = 0, 𝑉 (0) = 0; while
free tip conditions are considered at the end of the pile: 𝑀(1) = 0, 𝑉 (1) = 0. On the other
hand, for the model that includes the effects of the loads of the incident field, the free tip
conditions are change into loaded tip conditions by imposing that the shear force at the pile
tip coincides with the resultant of the horizontal tractions originated by the incident field at
this position: 𝑉 (1) = 𝑉 𝐿

𝐼 , see Eq. (C.8).
For layered soil profiles, Eqs. from (C.15) to (C.22) are applied for each stratum and con-

tinuity boundary conditions for pile lateral displacements, rotations, shear forces and bending
moments are also imposed at the depth of each layer interface:

𝑢𝑗(1) = 𝑢𝑗+1(0) (C.23a)
𝜃𝑗(1) = 𝜃𝑗+1(0) (C.23b)

𝑀 𝑗(1) = 𝑀 𝑗+1(0) (C.23c)
𝑉 𝑗(1) = 𝑉 𝑗+1(0) (C.23d)

It is important to notice that the obtained equations include all the phenomena that were
described before (soil reaction to pile displacement and rotation, as well as the effects of the
incident field). However, simpler formulations that neglect the contribution of some of the
components can be directly obtained by nullifying the corresponding terms.
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D

Título de la Tesis Doctoral: Respuesta dinámica de
estructuras pilotadas. Implementación de un modelo

basado en la formulación integral del problema y el uso
de una solución fundamental del semiespacio

estratificado1

D.1 Objetivos
El objetivo último de la disertación que se presenta es la implementación de un código

basado en la formulación integral del problema elástico que incorpore una Solución Funda-
mental para el semiespacio viscoelástico estratificado, así como su aplicación al análisis de la
respuesta dinámica de cimentaciones pilotadas y estructuras sobre este tipo de cimentaciones.

El semiespacio (en general estratificado) es modelado haciendo uso de una estrategia
numérica de colocación con esta habilidad mientras pilotes y estructura son tratados como
elementos finitos de tipo viga. El nuevo software desarrollado con estos principios reduci-
rá notablemente los recursos de computación, permitiendo modelar problemas que, con los
programas previamente disponibles por el Grupo, eran inabordables.

En el camino de consecución de este objetivo principal, se establecerán una serie de ob-
jetivos parciales:

Formulación e implementación:

• Estudio de las bases teóricas y de la formulación de la solución fundamental del se-
miespacio viscoelástico estratificado que pretende utilizarse. Familiarización con las
rutinas desarrolladas para este tipo de soluciones fundamentales específicas.

• Implementación de dicha solución fundamental en un modelo acoplado para el análisis
de la respuesta dinámica de cimentaciones pilotadas. Reformulación de los algoritmos
previos de EC-EF en el sentido de incorporar este tipo de soluciones fundamentales.

• Validación con resultados existentes. Estudio de los rangos de validez y aplicación del
modelo y de la técnica numérica (dificultades numéricas asociadas a la solución adop-
tada, número de subcapas necesarias para representar adecuadamente una estratigrafía
concreta, etc.) mediante la comparación con resultados correspondientes a distintos
problemas y configuraciones.

• Elaboración de estrategias numéricas orientadas a la optimización de la eficiencia y
requerimientos computacionales del código desarrollado.

1En este apéndice se presenta un breve resumen en castellano de la Tesis Doctoral de entre 5 y 20 páginas,
de acuerdo con el artículo 10 del Reglamento de Estudios de Doctorado de la ULPGC, aprobado por el Consejo
de Gobierno el 17 de diciembre de 2012 (BOULPGC de 9 de enero de 2013) y modificado por el Consejo de
Gobierno de 23 de octubre de 2013 (BOULGPC de 4 de noviembre de 2013), de 21 de abril de 2016 (BOULPGC
de 11 de mayo de 2016) y de 29 de septiembre de 2016 (BOULPGC de 7 de octubre de 2016).
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Aplicación del modelo:

• Aplicación del modelo desarrollado a la caracterización de las propiedades dinámicas
de cimentaciones pilotadas mediante la obtención de funciones de rigidez y amortigua-
miento en el dominio de la frecuencia. Estudio de la influencia de la variabilidad del
perfil en dichas variables.

• Aplicación del modelo desarrollado para la obtención de factores de interacción ci-
nemática de configuraciones de interés. Estudio de la influencia de la variabilidad del
perfil.

• Estudio de esfuerzos en pilotes individuales y grupos de pilotes en terrenos estratifica-
dos provocados por trenes de ondas sísmicas que inciden sobre el emplazamiento.

• A partir de los resultados obtenidos por el modelo desarrollado y haciendo uso de
técnicas de subestructuración, estudio de los efectos de interacción suelo-estructura en
la caracterización dinámica de estructuras de aerogeneradores marinos.

• Aplicación del modelo desarrollado para el estudio del uso de barreras de pilotes como
medida de mitigación de las vibraciones en el terreno.

Difusión:

• Difusión de los resultados obtenidos en revistas indexadas y ponencias en congresos
internacionales.

D.2 Modelo integral
El modelo desarrollado en este documento de tesis se basa en la implementación de una

solución fundamental de semiespacio estratificado en un modelo acoplado de Elementos de
Contorno - Elementos Finitos (EC-EF) preexistente para el análisis dinámico de cimenta-
ciones y estructuras pilotadas [17]. En este modelo previo, el terreno, considerado como un
medio infinito, es discretizado haciendo uso de formulaciones de EC estándares. Los pilotes
de la cimentación, por su lado, son modelados haciendo uso de EF tipo viga clásicos. Para
la resolución conjunta y directa del problema, se incorporan al sistema ecuaciones de aco-
plamiento adicionales entre pilotes y terreno y pilotes y encepado. Se trata de ecuaciones de
equilibrio y compatibilidad en términos de las variables representativas, con un carácter más
o menos directo según sea la metodología (EC ó EF) utilizada para representar el comporta-
miento de las regiones implicadas.

Las bases del modelo EC-EF previo y, por tanto, también del modelo desarrollado en la
presente tesis, nacen del modelo estático presentado por Mendonça et al. [18–20]. En ellos,
la interacción entre el suelo y el pilote se reduce a un conjunto de fuerzas distribuidas que
actúan sobre una línea de carga, mientras que los efectos de la rigidez adicional aportada por
los pilotes se incorporan a través de las ecuaciones de equilibrio de elementos finitos de los
mismos. La pérdida de la dimensión de los pilotes evita toda discretización de la interfase
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entre ellos y el terreno, con el consiguiente ahorro de grados de libertad respecto a una for-
mulación basada exclusivamente en EC. A pesar de esta simplificación, el modelo EC-EF es
capaz de reproducir fielmente la respuesta dinámica de las cimentaciones de pilotes que se
obtendría mediante el uso de una formulación completa de medio continuo (EC).

El nuevo modelo desarrollado en esta tesis pretende avanzar en las prestaciones y po-
sibilidades del modelo EC-EF anterior con la implementación de soluciones fundamentales
(Funciones de Green) de semiespacio estratificado en el módulo que simula el comporta-
miento dinámico del terreno. Debido a que esta nueva solución fundamental ya satisface las
condiciones de contorno del medio estratificado, se evita la discretización de la superficie
libre del mismo y las interfases entre estratos. Este avance permite reducir la dimensión del
problema de forma muy notable y elimina, asimismo, una importante fuente de incertidumbre
en cuanto a la cantidad de semiespacio a discretizar.

En relación con el modelo que se propone, no es de rigor hablar en términos de Elementos
de Contorno en referencia a la técnica numérica que se emplea, ya que:

• La estrategia utilizada para el acoplamiento pilote-suelo (idéntica a la seguida en el mo-
delo previo) no implica variables de contorno del terreno. No se discretiza la interfase
suelo-pilote y las fuerzas asociadas a esta interacción pueden tratarse como fuerzas de
volumen en el terreno.

• En caso de existir un encepado que conecte las cabezas de los pilotes, se considera que
no existe contacto entre este y el terreno

• Las condiciones de contorno entre estratos y en la superficie del suelo del problema
real a resolver son verificadas ya por la solución fundamental que pretende utilizarse
por lo que no es necesaria la discretización de dichos contornos.

Así, es mejor referirnos al modelo desarrollado en términos de una metodología de colocación
basada en la formulación integral del problema para el terreno. Por tanto, en este modelo
integral, solo el pilote es discretizado con elementos finitos tipo viga y las variables primarias
del problema son los desplazamientos y las fuerzas resultantes que representan la interacción
con el suelo, ambas a lo largo del eje de los mismos (ver Fig. D.1).

La formulación del modelo desarrollado permite asumir diferentes fuentes de excitación
del sistema suelo-pilotes. Dichas fuentes pueden ser: trenes de ondas sísmicas que imponen
un campo incidente en los puntos del terreno estratificado, cargas externas actuando sobre
la superficie libre del terreno o acciones directamente impuestas en los encepados o en las
cabezas de los pilotes mediante el establecimiento de fuerzas o desplazamientos prescritos.

Por último, cabe destacar que, si bien la nueva solución fundamental empleada en el mo-
delo propuesto supone un considerable ahorro en términos de grados de libertad del problema,
el proceso de cálculo de la misma es mucho más costoso (desde el punto de vista computacio-
nal) que las soluciones fundamentales empleadas en los modelos clásicos. Por ello, y con el
objetivo de disponer de una herramienta eficiente, se ha implementado una estrategia numéri-
ca que permite optimizar el uso de la nueva solución fundamental, reduciendo enormemente
el tiempo computacional requerido por el código desarrollado.

Instituto Universitario SIANI 193



D
.

RESUMEN EN CASTELLANO

Figura D.1: Grados de libertad de los elementos empleados para los pilotes. Desplazamientos
y giros de la sección (izquierda) y fuerzas distribuidas de interacción suelo-pilote (derecha).

D.3 Problemas estudiados
Una vez implementado y validado el nuevo modelo, se han realizado una serie de estu-

dios relacionados con el comportamiento dinámico de cimentaciones de pilotes y estructuras
pilotadas. A continuación, se describen brevemente los diferentes problemas considerados.
Con la intención de aprovechar al máximo las habilidades del modelo integral desarrollado,
todos los estudios se centran en analizar cómo afecta la estratigrafía del terreno a diferentes
variables de respuesta de las cimentaciones y estructuras pilotadas.

D.3.1 Efecto de la variabilidad del perfil en las impedancias de pilotes
inclinados

En primer lugar, se estudia el problema de las impedancias de grupos reducidos de pilotes
inclinados, analizando cómo varían las curvas de impedancia debido a la variabilidad del per-
fil del terreno. Para ello, se comparan los resultados obtenidos considerando un semiespacio
homogéneo con los resultados correspondientes a diferentes perfiles en los que la velocidad
de propagación de la onda aumenta con la profundidad de forma continua siguiendo una ley
exponencial. Los resultados se presentan de forma totalmente adimensional para una mayor
generalidad y utilidad práctica de las curvas obtenidas.

D.3.2 Efecto de la variabilidad del perfil en la respuesta sísmica de
cimentaciones pilotadas

A continuación, se estudia la influencia de la variabilidad del perfil sobre la respuesta
sísmica de cimentaciones de pilotes. En este caso, se asumen dimensiones usualmente em-
pleadas para dichas cimentaciones y se eligen tipos de suelo representativos de los que se
pueden encontrar en la realidad. Estos suelos presentan una variabilidad continua del valor
de la velocidad de onda con la profundidad y los resultados obtenidos con dichos perfiles
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Figura D.2: Representación del problema sísmico.

se comparan con los correspondientes a un medio homogéneo con las propiedades medias
según recomienda la norma, ver Fig. D.2.

Se estudia cómo influye esta variabilidad del terreno en los factores de interacción ci-
nemática de la cimentación (dominio de la frecuencia), así como sobre la respuesta de los
sistemas que se sitúen sobre ellos mediante la obtención de espectros de aceleración máxi-
ma (dominio del tiempo). Para completar el análisis, también se estudia si la suposición del
terreno homogéneo equivalente permite estimar, o no, los esfuerzos cinemáticos máximos a
los que se ven sometidos los pilotes ante la actuación de ondas sísmicas.

D.3.3 Efecto de la estratigrafía en la eficacia de barreras de pilotes
La versatilidad del modelo desarrollado permite su aplicación para problemas en los que

los pilotes no se emplean como cimentación, sino como medida para la mitigación de las
vibraciones que se propagan por el terreno. En concreto, y aprovechando las fortalezas del
modelo desarrollado, se estudia cómo se ve afectada la eficiencia de la barrera de pilotes
debido a la presencia de un estrato rocoso de gran rigidez a una cierta profundidad en el
terreno. El problema estudiado se representa en la Fig. D.3.

Figura D.3: Representación del problema de barreras de pilotes.
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D.3.4 Efecto de la variabilidad del perfil en la caracterización dinámica
de estructuras de aerogeneradores monopilotados

El último problema abordado está íntimamente relacionado con el proyecto de investi-
gación en el que se enmarca la tesis. Se analiza el problema de la caracterización dinámica
de estructuras de aerogeneradores marinos soportados por monopilotes. El modelo desarro-
llado se utiliza para obtener las funciones de impedancia de los mismos y, mediante una
metodología de subestructuración, se calculan las variaciones en la frecuencia fundamental
y amortiguamiento del sistema debidas a la flexibilidad de la cimentación. Para este estudio,
se emplean propiedades características de los suelos y de las dimensiones estructurales para
este tipo de construcciones que han sido obtenidas a partir de datos reales disponibles en la
literatura.

D.4 Conclusiones y desarrollos futuros
En el presente trabajo de tesis se desarrolla e implementa un modelo numérico para el

análisis dinámico de cimentaciones de pilotes. La formulación del modelo se basa en la for-
mulación integral del teorema de reciprocidad en el medio viscoelástico y el uso de una so-
lución fundamental avanzada para el semiespacio estratificado. A su vez, los pilotes se tratan
como líneas unidimensionales de carga actuando en el interior del terreno, incorporando los
efectos derivados de la rigidez de los mismos mediante las ecuaciones de equilibrio carac-
terísticas de una representación mediante elementos finitos. Las formulaciones del terreno y
pilotes se acoplan imponiendo condiciones de compatibilidad y equilibrio en términos de los
desplazamientos y fuerzas distribuidas de interacción suelo-pilote, respectivamente.

El uso de soluciones fundamentales avanzadas que ya satisfacen las condiciones de super-
ficie libre y compatibilidad entre estratos, elimina la necesidad de discretizar dichos contornos
del terreno. Mientras que el tratamiento unidimensional de los pilotes elimina la necesidad
de discretizar todas las interfases entre el suelo y dichos elementos, ahorrando un número
significativo de grados de libertad del problema (especialmente a lo largo del fuste de los
pilotes). Con todo esto, se obtiene un modelo simplificado, pero a la vez riguroso, formulado
exclusivamente en términos de las variables de los pilotes. Esta herramienta permite el es-
tudio dinámico de cimentaciones pilotadas de una forma muy eficiente, incluso en terrenos
cuyas propiedades presenten un alto grado de variabilidad.

El modelo desarrollado ha permitido al Grupo de Investigación en el que se integra la
tesis abordar problemas que, con las herramientas previas del grupo, eran computacional-
mente inabordables. Algunos de estos problemas se han analizado en el presente documento,
poniendo de manifiesto la influencia de la variabilidad del perfil del terreno en la respues-
ta dinámica de cimentaciones pilotadas (impedancias, factores de interacción cinemática y
esfuerzos) y, mediante técnicas de subestructuración, en la caracterización dinámica de es-
tructuras para aerogeneradores marinos monopilotados. También, la versatilidad del modelo
desarrollado ha permitido analizar el uso de configuraciones de pilotes como medida de mi-
tigación de las vibraciones del terreno. A partir del modelo y del trabajo desarrollado a lo
largo de la duración de la tesis, se proponen las siguientes líneas futuras:
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Modelo integral:

• Estudio del comportamiento dinámico de configuraciones de pilotes. Uso del modelo
en su estado actual para realizar, por ejemplo:

– Análisis de la influencia del perfil del terreno en los fenómenos de interacción
suelo-estructura mediante técnicas de subestructuración y funciones de impedan-
cia y factores de interacción cinemática.

– Estudio de la respuesta sísmica de cimentaciones de pilotes en medios estratifi-
cados o con perfiles de suelo variables ante trenes de ondas con un ángulo de
incidencia genérico.

– Aplicación del modelo desarrollado para el análisis de configuraciones más com-
plejas, tales como cimentaciones con un elevado número de elementos o el es-
tudio de “metabarreras” como medidas de mitigación de vibraciones del terreno.
Análisis de configuraciones óptimas mediante cualquier tipo de metodología de
optimización.

• Incorporación de superestructuras. De este modo, se podrán abordar de forma directa
problemas que requieren de una mayor elaboración para poder ser estudiados mediante
técnicas de subestructuración.

– La tipología estructural se propone que sea totalmente genérica mediante el uso
de elementos finitos de tipo viga y lámina, con una unión a los pilotes mediante
encepado rígido o compatibilización nodal.

– Así mismo, se podrán considerar varias estructuras pilotadas independientes, cu-
ya interacción sea exclusivamente a través de la propagación de energía por el te-
rreno, permitiendo el estudio de efectos de interacción estructura-suelo-estructura.

– Otra aplicación de este modelo avanzado con superestructuras es la del estudio de
los efectos ciudad (site-city interactions en terminología inglesa). Para ello, podrá
reducirse cada uno de los edificios a un único elemento viga conectado a un único
pilote.

• Estudio de problemas con carga móvil. Modificación del modelo desarrollado para el
tratamiento de problemas con una carga en movimiento por el semiespacio, pudien-
do abordar problemas que incluyan como fuente de excitación el paso de vehículos
cercanos (tráfico, trenes, etc.).

En su versión más desarrollada, el modelo numérico permitiría la simulación directa de pro-
blemas con excitación genérica (ondas sísmicas con propagación arbitraria, cargas de tráfico,
etc.) que incluyan una o varias estructuras pilotadas y con la posibilidad de la existencia de
barreras de pilotes para mitigar las vibraciones transmitidas por el terreno, todo esto pudiendo
considerar una estratigrafía del suelo altamente variable.
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Uso de la solución fundamental:

• Regularización de la solución fundamental. Búsqueda de un proceso de regularización
adecuado para la solución fundamental del semiespacio estratificado, permitiendo su
integración en el interior de elementos bidimensionales sin necesidad de estrategias
especiales de colocación. Así, podría utilizarse dicha solución fundamental en los có-
digos de elementos de contorno disponibles por el grupo, permitiendo el estudio de
otras tipologías de cimentaciones (p.ej., superficiales o embebidas) sin la necesidad de
discretizar la superficie libre ni las interfases entre estratos.

• Estrategias para una uso eficiente de la solución fundamental. Desarrollo de estrategias
computacionales que aceleren el proceso de cálculo de la solución fundamental para
su incorporación eficiente a los modelos de elementos de contorno.

De esta forma, los modelos numéricos desarrollados podrían simular de forma directa el com-
portamiento dinámico de infinidad de tipologías estructurales y de cimentación construidas
sobre perfiles con un alto grado de heterogeneidad. El diseño estructural podría incluso rea-
lizarse combinando elementos de continuo con elementos reducidos de tipo viga o lámina.

Transferencia de conocimiento:

• Software en abierto. El modelo desarrollado en el presente documento podrá ser colga-
do públicamente en la web, ya sea en forma de código abierto o mediante ejecutables.
Cabe destacar que la eficiencia del mismo permitiría su uso, incluso, en ordenadores
sin grandes prestaciones.

• Obtención de recomendaciones mediante Machine Learning. La versatilidad y eficien-
cia del modelo desarrollado pueden aprovecharse para obtener un gran volumen de
resultados en problemas de interés. A partir de estas grandes bases de datos, y me-
diante el uso de técnicas de aprendizaje automático, podrían inferirse expresiones y
recomendaciones de aplicación práctica directa. Algunos ejemplos pueden ser: facto-
res de seguridad para incorporar efectos de interacción suelo-estructura, o coeficientes
correctores que incorporen los efectos de la estratigrafía del terreno. Esta nueva línea
propuesta tiene puntos en común con líneas de trabajo seguidas por otras divisiones del
Instituto SIANI, por lo que su desarrollo abriría la posibilidad nuevas colaboraciones
y sinergias entre los distintos grupos de investigación.

De esta forma, se pretende dar utilidad y valor práctico a los resultados obtenidos con el
modelo desarrollado, intentando aprovechar las prestaciones del mismo para proporcionar
conocimiento de aplicación directa que puedan ser empleados por la comunidad científica y
profesional en el ámbito de la ingeniería civil.
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