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Abstract

The effects of considering the tangential tractions that act on the soil-pile in-
terface in the estimation of the pile seismic response are studied through a Beam
on Dynamic Winkler Foundation model, which includes the distributed moments
produced by the rotation of the pile cross-section and the action of the incident
field. The performance of the developed Winkler formulation is evaluated by using
a rigorous continuum model based on boundary elements that allows the use of
both smooth and welded contact conditions at the soil-pile interface. In order to do
the analyses, the seismic response of a fixed-head single pile embedded in different
soils subjected to planar shear waves is computed in terms of envelopes of maximum
bending moments and shear forces. Two soil profiles are assumed: homogeneous and
two-strata halfspaces. The tangential tractions are found to significantly increase
the pile maximum shear forces, but to have a minor impact on the pile maximum
bending moments. The proposed Winkler model accurately reproduces the results of
the continuum formulation for both contact conditions. However, some differences
are found in the evaluation of the inter-layer envelopes, for which the simplified
model underestimates their values.

Keywords: pile foundation, soil-structure interaction, kinematic interaction,
BDWF model, boundary elements, tangential tractions

1 Introduction

The seismic response of pile foundations has been a demanding object of study in the soil-
structure interaction field for the last decades. In the event of earthquake, seismic waves
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will deform the pile originating internal forces along its length. Based on field evidences
and experimental tests [1-4], it has been concluded that those kinematic forces can be
as significant as the ones produced by the vibration of the supported structure (inertial
forces) in the pile failure.

Among the different approaches that can be used for the analysis of the soil-pile system,
the Beam on Dynamic Winkler Foundation (BDWF') model is a common choice. Although
this kind of model was initially designed and still used for studying beams resting over
the soil [e.g. 57|, it also has a wide application in the modelling of embedded piles [e.g.
8-10]. Regarding the use of the BDWF model for computing the seismic response of pile
foundations, and with no intention of presenting a full literature review, authors want to
cite some of the pioneering works [11H13], as well as recent studies [14-17], which prove
that this approach is still up-to-date. The main benefits of BDWF models are their simple
formulation, low computational requirements and the possibility of inclusion of nonlinear
behaviour of soil just by modifying the springs and dashpots coefficients. However, only
the linear scenario will be considered in this study.

The interaction between soil and pile is often reduced to the lateral stiffness of the
soil. Nevertheless, in addition to the lateral soil reactions, tangential tractions can also
arise along the soil-pile interface depending on the terrain characteristics. Regarding the
Winkler formulation, the additional loads that those tangential stresses produce into the
pile can be represented as distributed moments [18]. This approach is followed in the
present work, distinguishing and detailing the different components of the distributed
moment: the one related to the pile flexural effects and the one related to the action of
the incident field.

The study at hand aims to (1) verify the ability of the proposed BDWF model to re-
produce the pile response by comparing its results with a rigorous continuous formulation
based on the Boundary Elements Method (BEM) and (2) analyse how the consideration
of the tangential tractions affects the seismic response of the pile in terms of envelopes of
stress and moment resultants.

In order to fulfil these two objectives, the paper is structured as follow: in Section
the problem under study is defined. Then, Section [3] describes both the Winkler and the
continuum models, giving special attention to the inclusion of the loads produced by the
tangential tractions. Finally, the obtained results are discussed in Section (] followed by
the main conclusions in Section (Bl

2 Problem Statement

The problem under study corresponds to a pile of length L and diameter d embedded in
a (in general) multilayered halfspace, as sketched in Fig. [[ The dynamical behaviour
of the pile is determined by the following properties: Young’s modulus FE, density p,
Poisson’s ratio v, shear modulus GG, area A, moment of inertia I and shear coefficient «
(Timoshenko’s beam theory). No damping is assumed for the pile.

On the other hand, each layer j of the halfspace is treated as a homogeneous, isotropic,
linear, viscoelastic domain with the following properties: Young’s modulus E7, density p?,
Poisson’s ratio vJ, shear modulus GJ, shear wave propagation velocity ¢! and hysteretic
damping coefficient 37. The portion of the pile length that crosses each soil layer is
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Figure 1: Problem under study. Artificial accelerogram and its spectrum used for the
study

denoted as h7.

The system is excited by planar shear waves that propagate vertically through the soil
acting in the z direction. For each layer, the horizontal displacements that this incident
field generates are obtained through the expression:

uf (2) = Aje™t* + Ble (1)

where AJI', B} are the amplitudes of the incident and reflected waves for layer j obtained by
solving the one dimensional wave propagation problem; k:} = w/c! is the wave number; i is
the imaginary unit; w is the angular frequency; and the term e is omitted for simplicity’s
sake.

The problem is handled in the frequency-domain by both the BDWF and BEM
methodologies. The transfer functions for the pile bending moments and shear forces
with respect to the free field displacement uy; are obtained and, then, their envelopes
are calculated by computing the time response through the standard frequency-domain
method [19]. For this purpose, one synthetic accelerogram compatible with the Type 2
response spectrum for Ground Type C [20] with a maximum acceleration equal to 0.375
g is used as excitation input (Fig. [). This accelerogram is assumed to correspond to the
free-field acceleration.

2.1 External loads due to the incident field

Attending to the expression of the incident field (Eq. [), and omitting the soil layer
super-index j for clarity’s sake, the only term that does not vanish from the stress tensor
oy is:

dU]

Trzp (Z) = 2G55x21 = GSE (2)
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Figure 2: (a) Tangential tractions due to the incident field. (b) Normal and tangen-
tial tractions due to a horizontal displacement of the pile cross-section. (c) Tangential
tractions due to a rotation of the pile cross-section

At a point of the soil-pile interface defined by the angle ¢, see Fig. [2(a), with a normal
vector n = (cos ¢, sin ¢, 0), the traction vector t; is obtained as:

tl('za 90) =om= (O, 0, Tpz, COS 90> <3>
This vertical tangential traction produces a moment m, around the y axis equal to:
my(2,0) = —Tut,, = —TT,,,C08 P (4)

where 7 is the pile radius. Note that the moment is negative according to the sign criteria
assumed.

The total distributed moment m; acting over the pile cross-section can be finally
obtained by integrating the punctual moment m, over the soil-pile interface:

2
my(z) = / myrde = —nr’r,,, = —7TT‘2GS—Z (5)
0

By defining K; = 7r?G,, one can express this distributed moment in a similar way
than the Winkler’s distributed soil reactions:
dU[

- —K,— 6

my(z) "1, (6)

On the other hand, considering the pile cross-section at tip level (z = L) with a normal
defined by n = (0,0, 1), the traction vector t¥ is equal to:

t¥ =om= (7% ,0,0) (7)

TZr)



where super-index L indicates that the variable is evaluated at the end of the pile.
Integrating this horizontal component of the traction vector over the pile tip surface,
the shear force produced at the end of the pile due to action of the incident field results
in:
dU[ L

VIL — //A tﬁIdA = WTQTmLZI = G, — < (8)

3 Methodologies

3.1 Winkler model for an embedded Timoshenko’s beam

In this section, the general differential equation that describes the dynamic lateral re-
sponse of the pile subjected to lateral distributed forces and moments due to seismic
excitation is written. The pile is modelled as a Timoshenko’s beam and the different
components of those loads are defined in order to include all phenomena that take place
in the problem under study. The result of this procedure is a BDWF model that can
be used to estimate the pile response (lateral displacements, rotations, shear forces and
bending moments), which is sketched in Fig. B(b).

The forces acting over a differential element of the beam are represented in Fig. B(a).
The translational and rotatory inertia of the beam are included in the terms ¢ and m
together with the distributed external forces and moments acting over it. Attending to
this, the equilibrium equations of the beam differential element results in:

dVv
— 4+¢=0 9
S (9a)
dM
d—+V+m—0 (9b)

The Timoshenko’s beam theory includes the effects of the warping of the beam cross-
section produced by the shear stresses by assuming a constant value of the beam shear
distortion 7,,. The constitutive laws that determine the Timoshenko’s beam bending
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Figure 3: (a) Forces and moments acting over a differential element of the beam. (b)
BDWF model for a pile embedded in a soil layer. (¢) Winkler’s soil impedance terms for
different deformation modes



moment (M) and shear force (V') are:

do
V = aGAy,. = aGA (j—“ - 9) (10D)
z

where wu is the lateral displacement of the beam and 6 is the rotation of the beam cross-
section produced only by the flexural effects.

Substituting the constitutive laws (I0]) in the equilibrium equations (@) and after some
simple operations, the differential equation that governs the lateral displacements of the

beam results in:
d*u 1 d% q L dm

au — =0 11
i T acAd: BT EL O (11)

While the beam rotation can be expressed in terms of the horizontal displacement as:

_ EI d3u+aGA%+ 1 dg 1 12)
 aGA | dz3 FEl dz oaGAdz E[m

6

Considering now the different phenomena that participate in the studied problem, and
omitting the soil layer super-index j for clarity’s sake, the components of the distributed
lateral force acting over the beam are:

q = pAw?u + K, (u; — u) (13)
o pAw?u: distributed force due to the translational inertia of the beam.

o K, (u; —wu): distributed force produced by the soil lateral impedance K,. This force
is produced by the relative lateral displacement between the beam and the soil.

On the other hand, the different components of the distributed moment acting over

the beam are:

d
m = plw?0 — Ko — ng (14)

o plw?0: distributed moment due the rotational inertia of the beam cross-section.

e —Kyb: distributed moment associated with the soil rocking impedance Kjy. This
moment is produced by the tangential tractions that arise in the soil-pile interface
when the cross-section rotates.

e m; = —K; du;/dz: distributed moment produced by the tangential tractions that
arise in the soil-pile interface due to the action of the incident field. The derivation
of this component directly from the incident field equations and separately from the
moment produced due to the reaction of the soil to the pile rotation constitutes a
novel and theoretically more rigorous approach of this interaction effect in relation
with similar previous models.



Table 1: Definition of the dimensionless parameters of the Winkler model
Definition Expression
lateral stiffness-inertia ratio k1 = (h)* (K, ,ko2) JaGA
rotational stiffness-inertia ratio = (h)?* (Ky — plw?) /EI
shear-flexural stiffness ratio (h)%zGA/ EI
dimensionless lateral soil stiffness = (h)?K,/aGA
dimensionless incident field moment coef. = (h)?K;/EI

Fig. Bl(c) illustrates the different Winkler’s soil impedances considered and the defor-
mation modes associated with them. In this work, the expressions of the lateral and rock-
ing soil impedances proposed by Novak et al. [21] are used. This set of soil impedances are
chosen over other options [e.g. [13,22-24] because they are obtained through an analytical
procedure and have explicit expressions that do not depend on heuristic parameters.

Now, including the expressions of the distributed force (I3]) and moment (I4]) in Egs.
(1) and (I2), after some algebraic operations (see[Al), and defining the set of dimensionless
parameters shown in Table [Il the differential equation of the beam lateral displacement
can be expressed in terms of the dimensionless axial coordinate & = 27/h7 as:

d4u d2u d*u
d—f"l — (K1 + K2) =— e + 1 (K2 + K3) u = Ka (K2 + K3) ur — (Ka — Ks) dgzj (15)
By defining:
a1 = K1 + Ko (16&)
ay = K1(k2 + K3) (16b)
as = /€4</i2 + :‘i3) (16C>
a4y = R4 — Ry (16d)

the solution that satisfies this differential equation can be obtained as the sum of the
homogeneous and particular terms following the expression:

u(€) = Cy %1 + Cy e 4 Oy e85 + Oy % + Cp uy(€) (17)

where s;_4 are the roots of the homogeneous equation:

+ 214
S1—4 = i\/al ;1 a2 (18)

Cp is the amplitude of the particular solution related to the dynamic loading (incident

field):

az + (kr)%ay
(kr)* + ar(kr)? + az
and C'_,4 are the amplitudes of the homogeneous solution that are computed by imposing
boundary conditions.

Cp =

(19)



Once the pile lateral displacements are known, by including the expressions of the
distributed loads (I3)), (I4) into Egs. (I0) and (I2)) , the rotation of the cross-section,
bending moment and shear force can be obtained as (see details in [Al):

1/h [d* d d
EI/(h)? [d*u d*u d*u;
) =5 [agh = 0 g+ e G -
—aGA/h [ d d

In this work, free displacement and fixed rotation conditions are assumed at pile head:
0(0) = 0, V(0) = 0; while free tip conditions are considered at the end of the pile:
M(1) =0, V(1) = 0. In addition to the free tip conditions, the loaded tip assumption
was also tested in the analyses yielding good results. For this loaded boundary condition,
the shear force at the pile tip is imposed to be equal to the resultant of the horizontal
tractions originated by the incident field at the pile end: V(1) = V¥, see Eq. [@®) in
Section 2.1

For layered soil profiles, Eqs. from (I3) to (22) are applied for each stratum and
continuity boundary conditions for pile lateral displacements, rotations and resultants are
also imposed at the depth of each layer interface:

ul (1) = u/*H(0) (23a)
07 (1) = 67 71(0) (23b)
M (1) = M7*t1(0) (23¢)
(1) )

It is important to notice that the obtained equations include all the phenomena that
were described before. However, simpler formulations that neglect the contribution of
some of the components can be directly obtained by nullifying the corresponding terms.

3.2 BEM model

A multi-region BEM approach is used to obtain a rigorous continuum mechanics solution
of the problem. It uses the Singular Boundary Integral Equation (SBIE) for elastody-
namics to build a solvable system of linear equations, from which unknown boundary
displacements and tractions are obtained [25]. This model has been developed by the au-
thors during the last years and it has been successfully used in a wide variety of dynamic
problems. Several of the publications related contain verification results with solutions
published by other authors [26], analytical solutions (the most recent [27]), and numerical
results obtained by the authors themselves through other methodologies [28].

For computational reasons, it is crucial to exploit geometric and functional symmetry
properties in this problem, see Fig. 4l They are enforced by using the element mirroring
approach [29]. Planar shear waves are assumed to be acting in the x direction, hence
y — z plane is a plane of anti-symmetry, and z — x plane is a plane of symmetry. Based
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Figure 4: Multi-region BEM meshes. Left: homogeneous soil. Right: two-strata soil

on previous experience [see e.g. @], meshes have been truncated at 3L, and at least three
quadratic elements per shear wavelength have been used. Nevertheless, a convergence
test with respect to pile response has been performed, and it has been found that a finer
mesh is needed for the pile and its surroundings.

The incident field is included in the BEM by posing the integral equations in terms of
the scattered field for the soil region ﬂﬁ]

Hu—u)=G(t—t) (24)

where H and G are the influence matrices, u and t are displacements and tractions
of the total field, and u; and t; are displacements and tractions of the incident field
obtained from Eq. (). The construction of these influence matrices follows well-known
methodologies, [see e.g. @] The singularities present in integrals due to the fundamental
solution (homogeneous full-space) are treated using the method of Li et al. @] for weak
singularities, and the method of line integrals of [31] for strong (Cauchy Principal Value)
singularities. The free-term is analytically evaluated using the formulation of Manti¢ @]
The final linear system of equations can be written as:

Ax=b+b; (25)

where A and b are built from influence matrices and boundary conditions, and b; =
Hu; — Gt; is the load vector due to the incident field.

In the following, two particular features that have been developed for studying the
problem at hand are described: the possibility of establishing a smooth contact condition
between two regions, and a methodology for cross-section stress resultants calculation for
the pile region.

3.2.1 Welded and smooth contact conditions

Let €, and €2 be two regions in contact through an interface I';. The interface I'; has
two faces I';, and I';_ whose orientations are compatible respectively with regions (1,
and €g. The boundaries of both regions are then 9, = I';, UT'; and 0 = I';_ UTY.



Displacements and tractions throughout 02, are related by the BEM influence matrices:

H;; H,;, u; _ G, Gij, t; (26)
H;,. Hj, j, u;, G Gy tj,

and analogously for d€)z. Subscripts [, for influence matrices denote collocation at
boundary I'; and integration over boundary I',,.

For a welded contact condition: u;, = u;_ and t;, +t;_ = 0; and the coupled system
can be written as:

H,;, H,; -G, o u G, o

Hj o Hjj —Gjy 9 w, (_ | G 2 { ti } (27)
g H; ;0 Gj_;. Hj, ty, g Gjp tr

g Hp;. Gy Hpg uy I Gy

which must be understood as a part of the complete system if more regions or boundaries
are present.

For a smooth contact condition, nodal displacements and tractions of the interface
must be rotated into a local orthogonal system (s1, s, n) formed by a pair of orthonormal
tangent vectors s; and s, and a normal vector n. Once rotation is performed, the influence
matrices for 02, can be expressed as:

u; t;

H“ H27J+ Hw+ ] s — [ GW G27J+ Gw+ ts (28)
o s no. I+ o s no. T+
I_IJJwZ Hj+7j+ H]+7J+ n G]Jr’z GJ+7]+ G]+’]+ tn
J+ J+

where uj and t; gather tangent components, and u} and t7 normal components.
Influence matrices for 0€2g can be written in a similar manner. Therefore, for a smooth

141 . n N n n n J— S N S J— . 3
contact'condltlon. uj, =uj ,t7 +t; =0t =t; = 0;and the resulting coupled
system 1s:

(
u;
. S n _(n s ..
Hiy, Hi;, Hj, 9 Gl 9 u;, Gi; @
L S n _(n n . .
H;,, H} ; Hi,;, 9 G} 9 ui, {_ | G 2 { t;
n s n ) s .
Z o Hy; Hj,; Gj; H; u;_ g Gy by
) o  Hp; Hp; ki Hik ty, g Gk
Uy

\ 7

(29)
which, as in the previous case, must be understood as a part of the complete system if
more regions or boundaries are present.

3.2.2 Cross-section stress resultants calculation

The solution at a point x' inside a domain Q (internal point) is obtained in a post-
processing stage by using the interior SBIE and its derivatives. The interior SBIE can

10



be directly applied to obtain displacement u', while an appropriate combination of its
derivatives can be used to obtain strain €}, and stress o}, tensors. In particular, the so-
called interior Hypersingular Boundary Integral Equation (HBIE) allows the calculation
of traction #} = ol nl at x' as:

t}:/ d?ktde—/ spupdl,  Lk=1,2,3 (30)
o0 a0

where uj, and t;, are already known, and dj, and sj, are the hypersingular fundamental
solutions which can be found elsewhere [see e.g. @] Numerical integration of this equation
is particularly difficult because of the presence of quasi-singular integrals of order up to
O (r=7), where r is the distance between observation (any point x € 9f2) point and
collocation point x'. An adaptive combination of cubic transformation and subdivision is
used in this work M, @] The interior HBIE can be used to determine stresses over pile
virtual cross-sections, which after a proper integration leads to beam resultant forces and
moments.

internal elements

TV

=

Figure 5: Pile cross-sections discretized into internal elements (white elements)

Each pile cross-section X is an oriented surface discretized into Ny elements (internal
elements). Each internal element & of order R serves as a support for a set of internal
points located at the integration points of a Gaussian quadrature of equal order. Let Np
be the number of integration points of the Gaussian quadrature, and 7n; and w; be the
j-th quadrature point and weight, then global Cartesian forces and moments with respect
to x,. are:

Jj=Ngr

Fe = /E bds= Y ¢ () 7 (m) w (31a)
Mg = /g (x —x,) x tdS = Z [x(n;) — x| xt"(n;) J (n;) w; (31b)

where J is the surface Jacobian. Finally, cross-section stress resultants are:

Fy=) Fe; My=)» M; (32)
X X

11



Cross-sections are concentrated near the pile tip, and near the interface between strata,
see Fig. [l This is completely necessary in order to be able to capture the strong variations
of shear force and bending moment near these pile locations.

4 Results and Discussion

In order to evaluate the influence of the tangential tractions on the estimation of pile
maximum resultants for different scenarios, the properties of pile and soil shown in Table
are used. These properties are similar to the ones used for the seismic analysis of piles
by other authors [36, 37].

Table 2: Pile and soil physical properties used in this study

Pile Halfspace / Upper Layer Bottom Layer (Rock)
d (m) 0.6 ct (m/s) 110, 250, 350  ¢* (m/s) 800
L (m) 3,6,12,24  (E/E! 50, 100, 500)

E (GPa) 30 ol (kg/m?) 1750 g2 (kg/m?) 2500
p (kg/m?) 2500 vl 0.4 v? 0.4

v 0.25 3l 5% 32 2%

Two soil profiles are considered: a homogeneous halfspace and a soil with two different
layers. For the two-strata profile, the properties of the upper layer will coincide with the
ones of the different studied halfspaces, while the bottom layer will present always the
same properties (as indicated in Table2]). For this stratified profile, the interface between
the two layers is assumed to be located at the half of the pile length (k' = h? = L/2).

As mentioned before, the work at hand also aims to study the performance of the
BDWF model compared against a more rigorous continuous formulation (BEM). The
description and assumptions of the different models used in the analyses are summarized
in Table 3

Regarding the computational demands of the BEM methodology, Table 4 shows the
average time needed for solving each frequency and an approximation of the memory
consumption for obtaining the results corresponding to the halfspace and two-layered
profiles considering the medium-valued properties: E/FE; = 100 and L = 12 m. The low
computational requirements of the BDWF model (less than 0.03s and 1MB in the worst

Table 3: Description of the models and contact conditions used in this study

Model Description

B1 Continuous model. Smooth contact condition on the pile shaft. Free pile tip.

B3 Continuous model. Welded contact condition on the pile shaft. Free pile tip.

B4 Continuous model. Welded contact condition on the pile shaft and tip.

W1  Winkler model. Horizontal soil stiffness. Free pile tip.

W2  Winkler model. Horizontal and rocking soil stiffness. Free pile tip.

W3 Winkler model. Horizontal and rocking soil stiffness. m; included. Free pile tip.
W4  Winkler model. Horizontal and rocking soil stiffness. m; included. Loaded pile tip.
W*b  Winkler model assuming the Bernoulli’s beam theory.

12



Table 4: Computational requirements of BEM model': mean time per frequency and
memory usage (E/E; =100 and L = 12 m)
Soil Real time CPU time Memory
Halfspace  4.41 min  114.5 min =~12.5 GB
Two-layers  8.56 min  221.9 min =25.7 GB
! run in a 28 cores (Intel® Xeon® CPU E5-2690 v4 @ 2.60GHz), 260 GB RAM computer

case scenario) makes it a suitable fast tool for the design stages; while the continuum
model needs to be run in a high-performance computer. Attending to the times needed to
compute each frequency, it is worth mentioning that the number of frequencies needed to
obtain a suitable time response of the system through an Inverse Fast Fourier Transform
algorithm should be carefully chosen when using the BEM model. The same procedure,
but using all the required frequencies, can be completed by the Winkler model in a short
amount of time.

4.1 Effects of the tangential tractions

The soil-pile interaction along the pile shaft is produced through the horizontal (¢,) and
tangential (¢,) tractions acting between them. The firsts, produced by the contribution of
the normal tractions (t,) and the horizontal component of the tangential tractions (),
see Fig. P(b), are the ones of most importance. Nevertheless, the vertical tangential
tractions (henceforth referred to just as tangential tractions), can also have an important
role in the seismic response of the pile.

The soil-pile horizontal tractions are modelled in the BDWF formulation through
the soil lateral stiffness K,. These tractions, proportional to the horizontal relative dis-
placement between pile and soil, constitute the main excitation of the beam. Thus, this
component has to be always included into any Winkler model for the analysis of pile
foundations.

On the other hand, the effects of the tangential stresses are usually not considered in
BDWEF models, or only the distributed moment produced by the rotation of the cross-
section is included, see Fig. [(c). However, this component does not represent the whole
tangential tractions that participate in the problem of vertically incident S-waves. The
effects of the tangential stresses originated by the distortion of the incident field can only
be captured if the distributed moment produced (m;) by its action is considered.

In order to illustrate the influence of the tangential tractions on the maximum resul-
tants of the pile, Fig. [flshows the envelopes of shear forces and bending moments obtained
by different models. The results obtained through the BEM formulation are used as ref-
erence values. In this model, the tangential stresses on the soil-pile lateral interface are
omitted or included by imposing smooth (B1) or welded (B3) boundary conditions, re-
spectively. On the other hand, three BDWF models are considered: one does not include
any tangential tractions by setting Ky = K; = 0 (W1); while the others include the
distributed moment of the tangential tractions produced only by the pile cross-section
rotation, i.e. K; =0, (W2); or by both the pile rotation and by the action of the incident
field (W3). For all models, free tip boundary conditions are assumed.

Attending to the obtained envelopes, the inclusion of the tangential tractions strongly

13
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Figure 6: Analysis of the influence of the tangential tractions on the pile envelopes of
maximum resultants. Pile length L=12 m (L/d=20). Halfspace profiles

alters the maximum shear forces of the pile: increasing their values along the whole beam.
This increment is more important for harder soils. Related to this effect, the differences
between the envelopes of shear forces for the three studied soils are reduced for the welded
contact hypothesis, being the magnitude of their maximum value independent of the soil
stiffness. This situation does not happen for the smooth contact condition. Regarding the
distribution of maximum shear forces along the beam: for hard and moderately-hard soils
(E/E! = 50,100) including the effects of the tangential tractions makes the envelopes
continuously increase with depth reaching the maximum value near pile tip; while for
smooth conditions, the maximum shear forces remain with similar values for z/L > 0.1.
On the contrary, for soft soils (E/E! = 500), the same trend is observed regardless the
contact condition: no significant variations depending on the depth are found in the
envelopes of shear forces for z/L > 0.2.

Regarding the ability of the proposed BDWF to reproduce the BEM envelopes, a good
agreement is observed between the models with smooth contact conditions (W1 and B1).
On the other hand, the obtained results also confirm that the soil rocking stiffness can
not completely capture the effects of the tangential tractions acting over the pile. The
envelopes obtained through this model (W2) are halfway from the ones corresponding
to the model without any tangential tractions (W1) and the one that includes all of
them (W3). For this reason, it can be concluded that both the rotation of the pile
cross-section and the distortion of the incident field produce roughly the same tangential
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tractions at the soil-pile interface (see Section [4.3). By including the rocking soil stiffness
and the distributed moment produced by the incident field into the BDWF model, the
envelopes of maximum shear forces of BEM formulation with welded boundary conditions
can accurately be reproduced.

For envelopes of maximum bending moments of the pile, the inclusion of the tangen-
tial tractions is found to have little influence. All studied models yield virtually the same
results. Only for the hardest soils at the pile tip, some differences can be appreciated
depending on the contact conditions. For these hard soils, a high oscillation is produced
near the pile tip when the tangential tractions are included for both the BDWF and BEM
models. However, the peak that arises for the Winkler (W3) exceeds the values obtained
by the continuous formulation. This behaviour is produced due to the exponential nature
of the homogeneous solution, whose amplitudes are determined by the boundary condi-
tions. The expressions of the beam bending moment and shear force include derivatives
of several orders. Thus, nullifying their value at pile tip produces this highly oscillatory
behaviour that vanishes as one moves away from the tip. In order to deepen this issue,
the effects of assuming different boundary conditions are discussed in the next section.

4.2 Effects of the pile tip boundary conditions

The definition of the boundary conditions at the pile head and tip has a strong impact on
its response at points near these ends, and can even modify the distribution of bending
moments and shear forces along the whole beam.

The head boundary conditions are generally known with great accuracy because they
are imposed by the union between the pile and the supported structure. For the incident S-
wave problem, usually no lateral loads acting on the pile head are assumed so its horizontal
displacement is considered free; while the rotation of the pile head can be assumed either
as free (hinged union or free pile) or fixed (restrained by the supported structure). The
fixed assumption is made in the present work because of the importance of adequately
estimating the magnitude of the bending moment at pile head for this configuration.

On the contrary, boundary conditions at pile tip present higher uncertainties. For
configurations where the pile tip reaches a perfectly rigid strata, it can be assumed that
pile displacements at this end coincide with the ones of the bedrock and that the pile
rotation is not allowed. This rotation restraint can be relaxed into a hinged condition
assuming that the pile end plastifies due to the excessive loads acting over it. However,
for configurations of piles embedded in a halfspace domain, where the beam end does not
reach any rigid soil, the tip boundary conditions are not clearly determined. One general
assumption is to consider a free tip, as has been done in the previous section. Another
option is to assume that soil-pile interaction forces exist at the pile tip surface, similar
to the ones acting on the pile shaft. This condition can be easily imposed in continuous
models by assuming welded contact conditions, but not for the simplified formulations.

One solution for the Winkler models is to use a set of impedance functions for the pile
end relating the tip rotations and displacements with the soil reactions acting over it, in
the same manner that the soil-pile interaction along the pile length is modelled. However,
there is a high uncertainty about the values or expressions for these tip-stiffness; being
necessary, in some cases, an ad hoc estimation of them. Another alternative proposed in
this work is to consider that at pile tip the shear force of the beam is equal to the horizontal

15



force that the tangential stresses of the incident field produce. This assumption follows
the same idea as the inclusion of the distributed moment produced by the tangential
tractions of the incident field along the pile shaft.

E/E§=50 E/E§=500
L/d=20 L/d=40 L/d=20 L/d=40
V nax (KN) V nax kN) V nax kKN) V nax kN)
0 10 20 30 40 50 O 10 20 30 40 50 0 10 20 30 40 50 O 10 20 30 40 50
0 T T T T T T T T T T 0 T T T T T T T T T
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02 B4 (loaded) > 0.2 |- 02 | 02
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<04 Wa lloaded) = L 04 |- ; 04 -
— : =
N 06 |- 0.6 |- 06 [ 0.6
0.8 - 0.8 - 0.8 0.8 -
1 =T X+ 1 S XK 1 X
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Figure 7: Analysis of the influence of the pile tip boundary conditions on the envelopes of
maximum resultants. Pile lengths L=12 m (L/d=20) and L=24 m (L/d=40). Halfspace
profiles

Fig. [7 shows the envelopes obtained by the formulations that include tangential trac-
tions and assuming the two possibilities for the pile tip boundary conditions: free (B3
and W3) or loaded (B4 and W4). As mentioned before, the load condition is imposed
by assuming welded boundary condition between the elements of the pile tip and the soil
in the BEM formulation; and by including the shear force obtained from the incident
field for the BDWF model. No results are shown for the models corresponding to smooth
conditions as it would be not coherent to assume tangential interaction at pile tip but
not along the pile shaft. The envelopes corresponding to different pile aspect ratios are
presented in order to analyse the influence of the tip boundary conditions on the whole
pile response.

For the continuous model, the changes in the boundary conditions only affect the
value of the envelopes at pile tip, both for shear forces and bending moments. On the
contrary, for the BDWF formulation these changes affects a longer portion of the pile end.
The peak value of the envelopes of shear forces are slightly reduced by the new loaded
boundary condition, while the pile tip force becomes non-zero (as expected) agreeing with
the results obtained through the BEM. A different behaviour is found for the envelopes of
maximum bending moments, which are affected to a greater extent by the changes of the
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boundary conditions (especially for hard soils). Analysing the responses of the Winkler
formulation, the results obtained by including the shear force produced by the incident
field at the pile end present a better adjustment to the continuous solution. However,
as the zero moment condition is kept, the Winkler model can not reproduce the bending
moment values near the tip that are computed by the BEM.

These effects of the tip boundary conditions on the pile envelopes are found for all the
pile aspect ratios. However, the portion of the pile that is affected by them is reduced for
larger L/d ratios, as expected.

4.3 Results in terms of tangential tractions

This section aims to further illustrate the importance of each component of the tangential
tractions and the ability of the BDWF formulation to reproduce their value along the pile
shaft. Fig. ] presents the real and imaginary part of the vertical tangential tractions that
are obtained along the pile length for three different excitation frequencies. The results
correspond to the line of maximum tangential tractions located at the points of the soil-
pile interface whose coordinates are z = d/2 and y = 0. Three values of the excitation
frequencies are selected in order to show the behaviour of the system in the low-, mid-
and high-frequency ranges of interest.

w=1rad/s w =40 rad/s w= 105 rad/s
RE[t, / ug] (kPa) RE[t, / ug] (MPa) RE[t, / ug] (MPa)
-40 -20 0 20 40 -15 -10 -5 0 5 10 15 -30 20 -10 0 10 20 30
0 7 T T 0 0 % T
02 0.2
o 04 04
—
N 0.6 - 0.6 -
B4 - total  x
0.8 - ; W4 - total — 0.8 |-
© W4 -rocking —
! W4 - inc. field
l L H 1 L H H
IMIt, / ug] (kPa) IMIt, / us] (MPa) IMIt, / ug] (MPa)
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Figure 8: Maximum tangential tractions along the pile for various excitation frequencies.
Pile length L=12 m (L/d=20). Halfspace profile £/E;=500 (soft soil)

The total values of the tangential tractions computed by the Winkler model agree
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very well with the results obtained by the continuous formulation. The highest differences
between them are produced for the high-frequency range.

Fig. 8 confirms the fact that the tangential tractions that arise from the action of the
incident field have the same importance as the ones produced by the pile rotation. The
relevance of the former is even increased for the high-frequency response.

Regarding the values of the tangential tractions at pile tip, the results obtained by the

BEM formulation can be adequately reproduced if the loaded tip conditions are assumed
for the Winkler model.

4.4 Effects of the pile aspect ratio

Despite only slender beams have been considered in the previous analyses, pile foundations
present a wide range of aspect ratios depending on their application or soil properties.
For this reason, this section aims to study the influence of the pile aspect ratio on the
obtained results.
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o 04 ) 04 H 0.4 0.4
= 1n
NO06 [ 0.6 [ 0.6 0.6
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Figure 9: Analysis of the influence of the pile aspect ratio on the envelopes of maximum
resultants. Halfspace profile £/E;=50 (hard soil)

Fig. shows the envelopes computed through the BEM and BDWF models and
considering the two studied contact conditions (smooth with free tip, and welded with
loaded tip) for several pile aspect ratios and assuming a hard soil. The effects of the
inclusion of the tangential tractions commented in the previous sections are produced for
all the aspect ratios. In addition, if the tangential tractions are included, significantly
higher values of the maximum shear forces are obtained as the pile becomes more slender.
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On the other hand, the envelopes of bending moments along the shortest pile are slightly
modified depending on the assumed contact condition, while for the slender piles these
differences in the maximum bending moments can only be found for the lower portion of
the pile.

Results from Fig. [ also show that the Winkler models can not perfectly emulate the
envelopes of maximum resultants in the case of short piles. This can be explained as the
effects of the pile tip have influence on a larger portion of the pile length than for slender
piles. The discrepancies obtained at the pile tip between the Winkler and the continuous
model are produced due to the diffractions at the surroundings of the pile end that the
BDWF formulation is not able to reproduce.
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Figure 10: Analysis of the influence of the pile aspect ratio on the envelopes of maximum
resultants. Halfspace profile E/FE;=500 (soft soil)

Fig. now shows the envelopes for the configurations presented in Fig. [0 but for a
softer soil. For this soil stiffness the discrepancies between the Winkler and continuous
model are reduced, but still appreciable differences are found for short pile aspect ratios.
Contrary to what happened for the hard profile, the pile slenderness has no significant in-
fluence on the magnitude of the maximum shear forces regardless of the contact condition

for the soft soil.

4.5 Effects of the soil stratification

In the previous sections, the seismic response of a pile embedded in a homogeneous soil
has been studied. However, it is also relevant to analyse the influence of the inclusion of
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the tangential tractions and the ability of the BDWF model to estimate the pile envelopes
in terrains with different layers. The study of these soil profiles is of vital importance,
as great maximum resultants (especially bending moments) are produced at the depth
where the soil properties abruptly change [36, 38-40)].
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Figure 11: Analysis of the influence of the soil stratification on the pile envelopes of
maximum resultants. Pile length L=12 m (L/d=20). Two-layered profiles

Fig. [ shows the envelopes for three soils profiles with two different layers, whose
properties of the upper layer change. Results obtained through the BEM and BDWF
formulations are displayed both including and omitting the effects of the tangential trac-
tions. As in the previous section, for the cases where they are included, the loaded tip
boundary condition is assumed.

The effects of the contact conditions already commented in Section [£.1] are also ob-
served for the stratified profiles: important increments in the maximum shear forces,
especially for hard soils; while bending moments are affected to a minor extent. For the
two-layered profiles, for which the maximum bending moments are located at the layer
interface, the inclusion of the tangential tractions augments its value. In contrast, the en-
velope of bending moments along the rest of the pile is almost unaffected by the assumed
contact condition.

On the other hand, two important variations in the distribution of maximum shear
forces are found if the tangential tractions are included. First, at the interface surround-
ings, the peaks of the shear envelopes take place in the softer layer instead of in the rock
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layer. And second, the shear forces along the pile shaft embedded in the rock stratum
are strongly increased. The latter effect is expected as the influence of the tangential
tractions is greater for harder soils.

The Winkler models reproduce the envelopes of their corresponding continuous models.
However, the magnitude of the maximum resultants computed by the simplified formu-
lation underestimates the values obtained from the BEM, both for the shear forces and
bending moments. Those differences become more important around the layer interface,
where the highest values of the envelopes take place.

4.6 Effects of the beam theory used in the BDWEF model

In this study, the Timoshenko’s beam theory has been used for modelling the pile because
of its generality and accuracy. However, as piles are usually long, slender structures,
they can be represented through the Bernoulli’s beam theory. The use of this theory
in the proposed BDWF formulation yields simpler and more compact expressions, which
are detailed in The current section aims to compare the results obtained through
the two different beam theories in order to discern under which assumptions the simpler
formulation is enough to represent the pile seismic behaviour. Note that, because of
the fact that the Bernoulli’s theory is a common hypothesis in published models for pile
foundations, this analysis is relevant for the interested reader.
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Figure 12: Analysis of the influence of the pile beam theory on the envelopes of maximum
resultants. Pile lengths L=3 m (L/d=5) and L=12 m (L/d=20). Halfspace profiles

The envelopes obtained through the BDWF models both including or not the tangen-



tial tractions and using the Timoshenko’s and Bernoulli’s beam theories are presented in
Fig. for the soft and hard halfspaces. Two pile aspect ratios are analysed as greater
differences between the Timoshenko’s and Bernoulli’s piles are expected for lower slen-
derness ratio. The obtained results confirm this hypothesis. However, for the models
with smooth boundary conditions, the results of the different theories are found to be
marginal; while some differences can be observed if the tangential tractions effects are
considered, even for very slender piles. For these high pile aspect ratios, the bending
moments obtained by using the Bernoulli assumptions are insensitive to the inclusion of
the tangential tractions for the upper half of the pile (z/L < 0.6).

Regarding the effect of the soil stiffness, the discrepancies between the two beam the-
ories are further reduced for soft profiles independently of the soil-pile contact condition.
For all the studied configurations, the Bernoulli assumption is a conservative one as it
yields slightly higher shear and moment resultants than the Timoshenko’s theory.

5 Conclusions

In this work, the influence of the tangential tractions on the seismic maximum bending
moments and shear forces of a pile embedded in a homogeneous halfspace and a bi-strata
domain has been evaluated through a Winkler formulation. Also, the use of the proposed
BDWF model for the estimation of the pile seismic response has been tested by comparing
its performance with respect to a more rigorous model of the continuum solid based on
BEM. The principal conclusions drawn from the obtained results are:

e The tangential tractions have a strong impact on the pile maximum shear forces,
significantly increasing their values. On the contrary, the maximum bending mo-
ments of the pile are virtually unaffected by the pile-soil contact conditions. The
effects of the tangential tractions are more important for hard soils.

e In order to reproduce the welded contact condition with the Winkler formulation,
both the distributed moments produced by the rotation of the pile cross-section and
by the action of the incident field have to be included.

e The BDWF model can be used to accurately estimate the envelopes of slender piles
embedded in homogeneous soils. However, for shorter piles, some differences arise
between the results of the simplified and continuous formulations.

e The use of the proposed Winkler formulation for the analysis of piles in soils that
present layers with different properties may underestimate the high moments and
forces that are produced at the layer interface when compared to the BEM results.

e The use of the Bernoulli’s theory for modelling the piles in this problem is an accept-
able option, as practically no differences are found with respect to the Timoshenko’s
beam theory. Furthermore, in case some discrepancies arise, the Bernoulli assump-
tion is a conservative one.
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A Derivation of the equations for the Timoshenko’s
beam Winkler model

In this Appendix, the detailed procedure followed in order to obtain Egs. from (IH]) to
([22)) is presented. For simplicity’s sake, the super-index related to the soil layer is omitted
and the variables are expressed as functions of the dimensionless axial coordinate £ = z/h.
Note that d/dz = (1/h) d/d&.

A.1 Rotation of beam section 6 (Eq. 20

In order to obtain the differential equation in terms of the lateral displacements of the
beam, u, first the expression of the section rotation € in terms of u has to be obtained

from Eq. (I2):

g ELT1 d3u+aGAld_u+ L ldg 1 (33)
 aGA [(h)3dE3 T EI hdé  aGAhdE  EI

Including the expressions of the distributed load (I3]) and moments (I4):

_EI
 aGA

+ S g hdf
(h3de® " EI hd¢ aGA h El

; 1 Pu aGAldu  (pAW — K;) G + K, G . (plo? — Ky) 0 — Ky ¢

(34)
Rearranging the terms in order to obtain the dimensionless coefficients from Table [Il and
separating the rotation of the beam section:

_ EI(1/h) [d’u aGAh)?  (pAw?® — K,) (h)*\ du K.(h)?  K;(h)*\ dus
b =oca (nye [de * ( El | aCA ) a ( oGA  El ) dg}
N (plw’® — Ky)

aGA
(35)

Grouping the pile rotation terms and solving, the expression of the pile rotation in terms
of the lateral displacements is finally obtained as:

_ (1/h) a " »
V= aGA _ plw?—Ky h2|:d§3+(K3_I{1)d_€+(H4_K5)d—§:|
( EI EI ) ( ) (36)
1/h a3 d d

A.2 Bending moment M and shear force V (Egs. 21122])

Once the expression of the beam rotation in terms of the lateral displacements is known,
the one of the bending moment can be simply obtained by substituting the expression of

0 ([B4) into Eq. (I0a) as:

1d0  EI/(h)? [d'u d*u d*u;
M=F-— = - — — -
hdé k3 + ke |[dE (k1 = ) dg? (4 = £i5) dég?

(37)
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While the expression of the shear force is obtained by substituting the expression of 6
[B6) into Eq. (I0h) and grouping the terms corresponding to du/d¢:

1d GA/R) [d3 d d
V =aGA (ﬁd_z —«9) = <(:j3+//€2) |:d£; +(m+m2)d—z+(/£4—/£5)dlg (38)

A.3 BDWF differential governing equation (Eq. 15

Now, from the general expression of the differential equation (III):

1 d'u 1 1 d% ¢ 1 1dm
_g  11ldm 9
() det T aGA(WPde?  BI  EIhde (39)

Including the expressions of the distributed load (I3]) and moments (I4]) and using the
dimensionless parameters (Table [I]):

d*u d*u d*u dé d*u
d—g—md—g—i-m?;jL(mu—mu[) k3 — h /‘izd—é_—lﬁ; L _ (40)

Substituting the derivative of the pile rotation (36]):

d*u d?u du;
et — K1 e + Ky e + (K1u — Kaug) K3
41
Ko d*u du d?u; d*uy (4D
aierd Frote (K1 —li3)—d€2 + (K4 — Ks) @ | g

Grouping together the terms of each derivative, operating in order to have d*u/d¢* mul-
tiplied by one, and separating the displacements of the beam to the ones of the incident
field, the governing equation is obtained as:

d*u d*u d*u
d—§4 — (Fdl +/€2)——|—/€1 (HQ"‘HJ;;)UZ K4 (Fdz—i‘/ﬁg)U}— (/i4 —/<L5)¥QI

i (42)

B Winkler model for an embedded Bernoulli’s Beam

The choice of the Bernoulli’s theory does not affect the equilibrium equations ([9)) obtained
in Section 3.1 but the constitutive laws of the beam. With this beam theory, one has:

_du
- dz
dé du

M=F[—=F[— 4
dz dz? (43b)

0 (43a)

Substituting the new constitutive equations (43)) in the equilibrium equations ([9)), the
general differential equation for a Bernoulli beam subjected to a distributed load and
moment results in: A

d*u q 1 dm
2y 7T 44
dz4  EI + El dz (44)
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Note that the only difference between Eqs. () and (@) is the d®¢/d2? term. In addition,
the expression of the shear force results in:
d*u
V=-FEl——-m 45
P (45)
Including the equations of the distributed force (I3) and moment (I4) in the differential
equation (44)) and using the dimensionless axial variable £, the differential equation that
governs the lateral displacements for this beam theory can be expressed in terms of the
dimensionless coefficients of Table [I] as:
d*u d*u d2u;
Ko—— + K1K3U = Kqk3us + K5

det - Pde de>

(46)

The solution of this equation is, again, the combination of the homogeneous and particular
components. Expressions from (I7) to (I9) are still valid if the terms a;_4 are redefined
as follow:

a; = Ko (47a)
ay = K1K3 (47Db)
a3 = K4K3 (47¢)
ay = —Ks (47d)

As before, in order to obtain the amplitudes of the homogeneous part, the external
(pile head and tip) and internal (at each layer interface) boundary conditions are applied.
The expressions of the beam rotation, bending moment and shear force for this beam
theory are:

) = 1 3¢ (19)
EI d*u
M(§) = h)2 dg2 (49)
_ 3
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