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Abstract

This paper analyzes the requirements of the models needed to estimate the seismic motions
observed along large cylindrical buried structures by performing a parametric analysis of the
problem using two different models: one in which the buried structure is considered as perfectly
rigid, and another one in which its actual structural flexibility is taken into account. The
study is performed using a Beam-on-Dynamic-Winkler-Foundation approach, and the models
are previously verified by comparison against results obtained for the problem at hand using a
more rigorous 3D multidomain boundary element model. The results obtained by comparison
of the seismic responses estimated by both models are used to build and propose a specific
criterion that can be used to elucidate under which circumstances is it possible to neglect the
structural flexibility. It is found that, contrary to what is commonly assumed, the structural
slenderness ratio alone cannot be used, in general, to predict the validity of the rigid structure
approach: embedment lengths, soil stiffness, depth of interest and natural period of study are,
also, key parameters that need to be taken into account. A close-form criterion, is proposed in
table form taking all such parameters into account.

Keywords: buried structures, seismic response, structural flexibility, design criterion

1 Introduction

Assessing the motions arising at different points within buried structures due to the action of
incoming seismic waves may be needed when such structures are due to house sensitive equipment
such as instruments, turbines, pumps, etc. In many occasions, the systems under study are big
massive structures. Therefore, when setting up a model for studying these motions of seismic origin
within the structure, one aspect to consider is whether it is really needed to take into account its
actual structural flexibility or, on the contrary, a perfectly rigid representation of it is enough,
mainly in cases of stout, non-slender configurations. It might be tempting to consider those large
non-slender structures as perfectly rigid in relationship with the surrounding soil. The kinematic
response of an actual structure of that kind is studied for instance in Vega et al. [32], where
differences between rigid and flexible approaches are quantified and, even though the structure
was non-slender and, apparently, very rigid, the rigid and flexible models provided results with
important discrepancies, observation which provided motivation for the present piece of research.

With a few exceptions related to the impedance problem (see e.g. Saitoh and Watanabe [25]),
the available literature on the topic does not include proposals of well-founded general criteria for
making this kind of decision. For this reason, this paper contributes to this issue by presenting a

∗This is the pre-peer reviewed version of the following article: A criterion to assess the relevance of structural
flexibility on the seismic response of large buried structures. Soil Dyn Earthq Eng (2018) 106:243–253. The final
publication is available at ScienceDirect via https://doi.org/10.1016/j.soildyn.2017.12.026.
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criterion that can be used for practical purposes by structural and geotechnical engineers to establish
if a structure under seismic excitation can be considered as a rigid body or, on the contrary, its real
flexibility can not be neglected. The criterion is based on a parametric analysis that studies the
errors between the motions of seismic origin provided by two models in which the buried structure
is considered from both points of view (perfectly rigid or with its actual flexiblity).

In this respect, this parametric analysis is performed using Beam-on-Dynamic-Winkler-Foundation
(BDWF) approaches, previously verified by comparison against results obtained for the problem at
hand using a more rigorous 3D multidomain boundary element model [16, 17]. These BDWF ap-
proaches follow the line of previous works related to the dynamic analysis of piles (Flores-Berrones
and Whitman [8]; Gazetas and Dobry [9]; Kavvadas and Gazetas [14] or Mylonakis [21]) or rigid
foundations (Gerolymos and Gazetas [10] and Varun et al. [31]). These are very well known mod-
els in which the structure is modeled as a beam, and the surrounding soil is represented through
unconnected springs and dashpots distributed along its buried length. One of the main differences
between such models lies in the way to establish the properties of those springs and dashpots.
In this sense, most BDWF models found in the literature could be classified in the following two
groups: a) models that adjust those properties based on numerical models that take into account
the actual nature of the problem (see e.g. Makris and Gazetas [19]; Makris [18] or Kavvadas and
Gazetas [14]) and b) models that propose those values based on theoretical wave propagation ap-
proaches as closed-form functions in the frequency domain, as in the work of Baranov-Novak [22]
who develop an elastodynamic plain–strain approach, assuming that the soil is divided in an in-
finite number of independent thin horizontal slices, and provide a simplified formulation of stress
field in soil. The classic expression provided by Novak et al. [23], that are also part of this second
group, will be the one used in the models presented herein. Finally, we can not fail to mention the
existence of other more evolved analytic models formulated as solutions of the three–dimensional
problem (Tajimi [28]). In this sense, the works of Mylonakis [20], Anoyatis and Lemnitzer [1] or
Bahrami and Nikraz [3] are very interesting.

The specific problem addressed in this work is one corresponding to a cylindrical structure
(hollow or solid) embedded in a half–space. The study has been carried out using a wide range of
properties for both, structure and soil. Taking into account the embedded length of the structures
included in this analysis, the hypothesis of a homogeneous half–space to model the ground may be
unrealistic in some practical problems. Thus, this work should be understood as a first approach
to the problem that has the purpose of provide a simple engineering criterion in order to be able
to discern under which circumstances it is realistic to assume a rigid seismic behaviour of the
structure. In that case, it will be possible the use of, e.g., calibrated Winkler models in the line
of the mentioned Gerolymos and Gazetas [10] or Varun et al. [31], or well established response
functions for perfectly rigid structures (such as, for instance, those provided by the classic works of
Elsabee et al. [6] or Kausel et al. [13] and more recently Conti et al. [5]), without the need of using
more rigorous and sophisticated models, in the line of continuum–base approaches as the ones used,
for example, for the analysis of the seismic response of tunnels [11, 24, 12, 15, 2], or for the seismic
analysis of real pumping structures, as the aforementioned Vega et al. [32].

This paper is structured as follows. After the introduction, the problem at hand is presented in
section 2, as well as the key aspects and parameters that affect the seismic response of the system.
The methodology and the BDWF models formulation, are explained in section 3. Section 4 includes
validation results of the BDWF models against a more rigorous 3D multidomain boundary element
model. Finally, results and the criterion proposed are included in section 5, followed by conclusions
in section 6.

2 Problem description

In order to look into the influence of the structural flexibility on the seismic response of large buried
structures, the results of two different models, that consider the structure either as a flexible solid
or as an infinitely rigid body, are compared and analyzed (see Figure 1).
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The structure is idealized geometrically as a completely buried solid cylinder of diameter D or
a cylindrical shell with constant outer and inner diameters D and Dint, and length L. The type of
section will be specified by a parameter δ = Dint/D defining a hollow (0 < δ < 1) or solid (δ = 0)
cross section. Welded contact conditions are assumed at the interface between the structure and
the surrounding soil, which is assumed to be a isotropic and homogenous half–space with Poisson’s
ratio νs, density ρs and shear wave velocity Vs. The system, for which a linear–elastic behaviour
is assumed, is subjected to vertically–incident shear waves.

(a) (b)

Dint

D

L
buried structure

(E, ν, ρ)

Soil (homogeneous halfspace)
(Es, νs, ρs)

seismic
excitation

üI

z z

Figure 1: Problem description. Influence of the structural flexibility on the seismic response of large
structures buried in homogeneous soil. (a) Deformable solid approach, (b) Rigid body approach

The properties of the soil, the flexibility of the structure and the variability of the seismic
incident field along the buried length of the structure are three key aspects that affect the seismic
response of the system. In this study, the flexibility of the structure depends on the type of cross
section (solid or hollow), the material properties, and the slenderness ratio. The variability of
the incident field, on the other hand, is related to the soil wave velocity (or soil stiffness) and
the characteristics of the seismic waves. Thus, the study will be performed varying the following
four parameters of the problem: a) Type of structural cross section: hollow (δ = 0.85) or solid
(δ = 0.00); b) Slenderness ratio of the structure (L/D = 2 − 10); c) Soil shear wave velocity
(Vs = 200 − 1000m/s2) and; d) Embedment lengths of the structure (L = 20, 40, 60 and 80m).

The rest of properties, considered as non–relevant for the aim of this study, are kept constant.
The structure is assumed to be made in concrete, characterized by its Young’s modulus E =
2.76 ·1010 N/m2, Poisson’s ratio ν = 0.2 and density ρ = 2500 kg/m3. On the other hand, Poisson’s
ratio νs = 0.3 and density ρs = 1570 kg/m3 are kept constant for the soil. With all this, the
resultant relationships between structural concrete and soil stiffnesses at the limits of the scopes
defining each ground type are also presented in Table 1. A wide range of values for the ratio E/Es

is covered, going from below 3 for ground type A to over 200 for ground type D.
The range of soil properties given above covers Eurocode–8 [7] ground types A, B, C and D.

The vertically–incident SH wavefield that impinges the system generates free–field ground surface
accelerations compatible with the type 1 design elastic horizontal ground motion acceleration re-
sponse spectra also provided by Eurocode–8 [7] for each ground type. Therefore, different synthetic
accelerograms, one for each ground type, are used as excitation motion according to the shear wave
velocity defining the soil in each configuration.

The response will be studied in terms of accelerations measured at five points with different
depths along the structure, z/L = 0.00 (top of the structure), 0.25, 0.50, 0.75 and 1.00 (bottom of
the structure). The main objective is presenting a criterion to decide when is the hypothesis of
infinite rigidity valid for a large buried structure. Therefore, the results need to be synthesized
and presented in terms of the deviation of the response obtained from the rigid body assumption
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Table 1: Relationships between structural concrete and soil stiffnesses at the limits of the scopes
defining each ground type

Ground type Vs (m/s) Es (N/m2) E/Es

A
1500 1.024 · 1010 ∼ 3
800 2.912 · 109 ∼ 10

B
800 2.912 · 109 ∼ 10
360 5.897 · 108 ∼ 50

C
360 5.897 · 108 ∼ 50
180 1.474 · 108 ∼ 200

D < 180 < 1.474 · 108 > 200

TB TC TD

branch 1 branch 2 branch 3

S
e

(T
)

Period T

Flexible model
Rigid model
Design response spectrum

ǭ(z)1

ǭ(z)2

ǭ(z)3

Figure 2: Representation of average difference ǫ(z)j (shaded area) between rigid body assumption
and flexible response spectra along three branches defining the design response spectrum.

with respect to a flexible structure model. This deviation is defined as differences between the
horizontal acceleration elastic response spectra characterizing the horizontal motions at different
depths. These differences will be quantified in terms of average differences along every one of the
three branches defining the elastic response spectra used (see figure 2). This average difference
ǭ(z)j along branch j is defined as

ǭ(z)j [%] =
1

nj

nj
∑

i

∣

∣

∣

∣

∣

Sf
e (Ti, z)− Sr

e(Ti, z)

Sr
e(Ti, z)

∣

∣

∣

∣

∣

Ψi ; j =







1, Ti / Ti 6 TB
2, Ti / TB 6 Ti 6 TC
3, Ti / TC 6 Ti 6 2

(1)

where

Ψi =
1 + sign

(

Sf
e (Ti, z)− Sr

e(Ti, z)
)

2
× 100 (2)

and nj is the number of specific periods at which the elastic response spectrum is computed along

branch j, while Sr
e(Ti, z) and Sf

e (Ti, z) are the elastic horizontal acceleration response spectra
characterizing the horizontal motions of the embedded structure either as a perfectly rigid or
flexible body, respectively. The values of the periods TB and TC depend on the ground type
according to Eurocode–8 [7]. For the present study, the responses are always computed at 120
different periods distributed from T = 0.01 s to T = 2 s. Note that errors are not added when
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the solution provided by the rigid model is more conservative than that of the flexible one. The
rotational motions along the structure are not taken into account when computing those elastic
horizontal acceleration response spectra.

3 Methodology

Carrying out the wide parametric study established in the previous section involves computing the
seismic response of a relatively large number of configurations of buried structures. This large set of
analyses makes advisable the use of a numerical tool of low computational cost but accurate enough
and able to adequately capture the differences arising when considering either a perfectly rigid or
a flexible model for the buried structures. This is why the present study is carried out through the
use of a frequency domain analysis procedure in which the frequency response functions (FRFs)
for each case are computed by means of a linear–elastic model based on the Beam-on-Dynamic-
Winkler-Foundation (BDWF) approach (see Figure 3), and the response of the system is then
computed for a given seismic input signal compatible with the corresponding response spectrum.

interaction between soil and structure:
translational and rotational spring-dashpot
distributed along depth

z

x

θ(ω, z)

u(ω, z)

[

Kxx(ω) Kxθ(ω)
Kθx(ω) Kθθ(ω)

]B

Timoshenko
beam model

incident field
(S–wave)

uI(ω, z)

uI(ω, L)

Kx(ω)

Kθ(ω)

Figure 3: BDWF model for the analysis of KI response of flexible buried structure excited by
vertical seismic shear wave

In order to be able to adequately represent the behaviour of the non-slender configurations,
the Timoshenko beam formulation [29, 30], as part of a BDWF approach, is adopted in this work
to model the buried structure. As mentioned above, the soil reactions to the lateral and rocking
harmonic structural motions are modelled using the expressions of complex impedances proposed
by Novak et al. [23]. These impedances relate the horizontal displacements u = u(ω, z) along the
structural axis and the free–field displacement uI = uI(ω, z) produced by the vertically–incident
SH wave field. Also, a moment over the structure is induced by this impedances and the rotation
of the section of the structure θ(ω, z).

3.1 BDWF Model Formulation

Taking rotatory inertia and shearing deformation into account, the governing equation that repre-
sents the transversal behaviour of the flexible structure according to this BDWF approach, can be
written in the frequency domain as follows:
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∂4u

∂z4
−

[

1

κµA

(

Kx − ρAω2
)

+
1

EI

(

Kθ − ρIω2
)

]

∂2u

∂z2

+
1

κµA

(

Kx − ρAω2
) 1

EI

(

Kθ + κµA− ρIω2
)

u

= −
1

κµA
Kx

∂2uI
∂z2

+
1

EI

(

Kθ + κµA− ρIω2
) 1

κµA
KxuI (3)

where the horizontal displacement associated with the incident field uI (of unit value at free–field
ground surface) is:

uI(ω, z) =
1

2

(

eikz + e−ikz
)

(4)

being k = ω/Vs the wave number, z the vertical coordinate that defines the depth from the free soil
surface, ω the excitation frequency, i the imaginary unit, E, µ and ρ the Youngs, shear modulus and
the density of the structure, A the area, I the moment of inertia and κ the shear correction factor
of the section (0.5 for hollow and 0.9 for solid sections). Kx and Kθ represent the soil stiffness for
horizontal and rocking vibrations. These impedances, key to model the Soil–Structure interaction
phenomena taking place, are defined by factors of stiffness and damping both of them distributed
along the buried depth of the structure. In this work, as mentioned previously, the expressions
proposed by Novak et al. [23] are used to define Kx and Kθ. Using their notation, those functions
can be expressed as follows (see Appendix A):

Kx = µs
[

Sr
x (ao, νs, ξs) + i Si

x (ao, νs, ξs)
]

(5a)

Kθ = µsD
2
[

Sr
θ (ao, νs, ξs) + i Si

θ (ao, νs, ξs)
]

(5b)

where µs, νs and ξs are the shear modulus, Poisson’s ratio and damping ratio of surrounding soil
and ao = ωD/Vs is the dimensionless frequency. At this point, it is useful to write the governing
equations of the problem in a non–dimensional form. Following Vaschy-Buckingham’s theory [4],
it is easy to see that such equations can be written as functions of four dimensionless variables
(L/D, E/Es, ρ/ρs, ao) besides the five intrinsically dimensionless ratios involved (ν, δ, κ, νs, ξs).
Thus, considering the vertical dimensionless coordinate ξ = z/L, the governing equation (3) can
be written as:

∂4u

∂ξ4
− α

∂2u

∂ξ2
+ β u = −γ

∂2uI
∂ξ2

+ η uI (6)

where the dimensionless coefficients α, β, γ and η, for the present case of cylindrical structures, are
defined as:

α = α1 + α2 (7a)

β = α1 α2 + α1

α̃2

α̃1

(

L

D

)2

(7b)

γ = α̃1

(

Sr
x + i Si

x

)

(7c)

η = α2 γ + α̃2

(

Sr
x + i Si

x

)

(

L

D

)2

(7d)

being

α1 = α̃1

[

(

Sr
x + i Si

x

)

−
π

4
a2o
ρ

ρs

(

1− δ2
)

]

(8a)

α2 = α̃2

[

(

Sr
θ + i Si

θ

)

−
π

64
a2o
ρ

ρs

(

1− δ4
)

]

(8b)
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The constant α̃1 and α̃2 included in these expressions are:

α̃1 =
4

π

1

κ

1 + ν

1 + νs

Es

E

(

L

D

)2 1

1− δ2
; α̃2 =

32

π

1

1 + νs

Es

E

(

L

D

)2 1

1− δ4
(9)

The general solution for the displacements along the beam that verifies eq. (6) has the form:

u (ξ, ω) = C1 e
s1ξ + C2 e

s2ξ + C3 e
s3ξ + C4 e

s4ξ + Cp

(

eiλξ + e−iλξ
)

(10)

where sj are the solutions of the characteristic equation of the homogeneous problem:

sj = ±
[

α

2
±

1

2

(

α2 − 4β
)

1

2

]
1

2

; j = 1, 2, 3, 4 (11)

and Cp is the amplitude corresponding to the particular solution that represent the behaviour
related to dynamic loading (incident wave) proposed:

Cp =
∆

λ4 + αλ2 + β
; ∆ =

1

2

[

a2o

(

L

D

)2

γ + η

]

(12)

with

λ =
ao√

1 + 2ξsi

(

L

D

)

(13)

a dimensionless parameter related to the incident field wave number.
The amplitudes of the homogeneous solutions Cj in equation (10) are computed by imposing

the boundary conditions at the top and bottom of the structure. Such equations are defined in
terms of the bending moment M (ξ, ao) and shear force Q (ξ, ao) that, for the beam theory used in
present approach, can be written in dimensionless form as:

ML2

EI
=
∂2u

∂ξ2
− α1 u+ γ uI (14a)

QL3

EI
=

1

φ

[

∂u

∂ξ
− (θL)

]

(14b)

where θ (ξ, ao) is the rotation of the beam cross–section and can be written as:

θL =
1

α3

[

∂u

∂ξ
+ φ

(

∂3u

∂3ξ
− α1

∂u

∂ξ
+ γ

∂uI
∂ξ

)]

(15)

in which

φ =
EI

L2κµA
=

1

8

1

κ

(

L

D

)

−2

(1 + ν)
(

1 + δ2
)

(16a)

α3 = α̃1

(

L

D

)

−2 [
(

Sr
θ + i Si

θ

)

−
π

64
a2o
ρ

ρs

(

1− δ4
)

]

+ 1 (16b)

In the present problem, free condition are assumed at the top of structure (ξ = 0):

(

M̃
)ξ=0

=

(

ML2

EI

)ξ=0

= 0 (17a)

(

Q̃
)ξ=0

=

(

QL3

EI

)ξ=0

= 0 (17b)
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while in the bottom (ξ = 1), the soil reactions are assumed to be related to the horizontal and
rotational motions of the structure through an impedance matrix of the type

{

Q
M

}ξ=1

+

[

Kxx Kxθ

Kθx Kθθ

]B {

u− uI
θ

}ξ=1

=

{

0
0

}

(18)

There exist a high uncertainty about the actual values of these bottom impedance functions,
and little references can be found in the BDWF–related literature. In the present work, and in line
with some recent works (see e.g. [27]), complex impedance functions corresponding to shallow rigid
circular footing on a halfspace problem are adopted. As usual, the can be written as

KB
xx (ao, νs) = µsD K̃x (ao, νs) (19a)

KB
θθ (ao, νs) = µsD

3 K̃θ (ao, νs) (19b)

KB
xθ (ao, νs) = KB

θx (ao, νs) = 0 (19c)

In the present work, K̃xx and K̃θθ are calculated from the closed-form solutions proposed by
Veletsos and Verbič [33] (see Appendix B). Finally, after rearranging eq. (18) and using the problem
dimensionless parameters, this equation can be written as

(

Q̃
)ξ=1

+ ϕ1 K̃x (u− uI)
ξ=1 = 0 (20a)

(

M̃
)ξ=1

+ ϕ2 K̃θ (θL)
ξ=1 = 0 (20b)

where

ϕ1 =
32

π

1

1 + νs

Es

E

(

L

D

)3

; ϕ2 =
32

π

1

1 + νs

Es

E

(

L

D

)

(21)

3.2 Winkler formulation for rigid model response

The frequency response functions corresponding to the model where the structure is assumed to
be perfectly rigid can either be calculated by following a limiting process (E/Es −→ ∞) from the
BDWF model developed above; or directly by using rigid body dynamics. This last approach is
very easy and leads to a 2 × 2 system of equations where the primary variables are the horizontal
displacement of the center of gravity (G) UG(ω) and the rocking rotation ΘG(ω) of structure (see
Figure 4). From these variables, the kinematic equation for the horizontal displacements u(ω, z) at
any location along the z-axis is

u (ω, z) = UG (ω)−ΘG (ω) (z − zG) (22)

In this approach, the dynamic equilibrium equations (force and moment equations) that govern
the response of structure, can be formulated as follows:

Kx (ω)

∫ L

0

[uI (z, ω)− u (z, ω)] dz +KB
xx (ω) [uI (L,ω)− u (L,ω)] = −ω2M UG (ω) (23a)

−Kθ(ω)ΘG(ω)L−Kx(ω)

∫ L

0

[uI(z, ω)− u(z, ω)](zG − z) dz −KB
θθ ΘG(ω)

+KB
xx(ω)[uI(L,ω)− u(L,ω)](L − zG) = −ω2IGΘG(ω) (23b)

where

M = ρ
π

4
D2

(

1− δ2
)

L ; IG = ρ
π

16
D2

(

1− δ2
)

L

[

1

4
D2

(

1 + δ2
)

+
1

3
L2

]

(24)
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z

x

θ(ω, z)

u(ω, z)

[

Kxx(ω) Kxθ(ω)
Kθx(ω) Kθθ(ω)

]B

Rigid Body model

incident field
(S–wave)

uI(ω, z)

uI(ω, L)

Kx(ω)

Kθ(ω)

Figure 4: Representation of Winkler approach used in this study for the analysis of KI response of
rigid buried structures under vertical seismic shear waves

are, respectively, the mass of structure and its rotational inertia about a transverse axis through
G. Since the soil–structure interaction factors Kx, Kθ and KB

xx, K
B
θθ are the same as in the flexible

model, eq. (23) can be written, after some simple mathematical operations, as follows:

[

A11 A12

A21 A22

]{

UG

ΘGD

}

=

{

B1

B2

}

(25)

with

A11 =
π

4
a2o

(

1− δ2
) ρ

ρs
−

(

Sr
x + i Si

x

)

− K̃x

(

L

D

)

−1

(26a)

A12 =
(

Sr
x + i Si

x

)

(

ξG −
1

2

)

L

D
+ K̃x (ξG − 1) (26b)

A22 =
π

16
a2o

(

1− δ2
)

[

1

4

(

1− δ2
)

+
1

3

(

L

D

)2
]

+
(

Sr
x + i Si

x

)

(

L

D

)2 [

ξG (1− ξG)−
1

3

]

(26c)

−
(

Sr
θ + i Si

θ

)

− K̃x (1− ξG)
2 L

D
− K̃θ

(

L

D

)

−1

A21 = A12 (26d)

B1 = −
1

2

(

Sr
x + i Si

x

) 1

iλ

(

eiλ − e−iλ
)

−
1

2
K̃x

(

eiλ + e−iλ
)

(

L

D

)

−1

(26e)

B2 =
1

2

(

Sr
x + i Si

x

) 1

iλ

(

eiλ + e−iλ
)

(1− ξG)
L

D

+
1

2

(

Sr
x + i Si

x

) 1

λ2

(

eiλ + e−iλ − 2
) L

D
−

1

2
K̃x

(

eiλ + e−iλ
)

(1− ξG) (26f)

where all these coefficients are written in terms of dimensionless parameters (L/D, ρ/ρs, ao, δ, νs,
ξs) necessary to describe the problem in this case.

4 Verification

Before performing the parametric analysis described above, the formulations derived in section
3.1 for the flexible BDWF model and in section 3.2 for the rigid model are herein verified by
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comparison against more rigorous continuum–type numerical solutions based on the Boundary
Elements Method. To do this, a three–dimensional multidomain boundary element code developed
by the authors [16, 17] is used as a reference solution, both for the flexible structure problem and
for the rigid structure problem, case for which a specific formulation for the perfectly rigid structure
hypothesis is even more suitable [26].

Comparisons are made for two representative cases within the ranges specified in section 2
for the parameters used in the present study: L = 60m, Vs = 500m/s, L/D = 3 and 8, and a
solid cross section. Thus, figures 5 and 6 show the horizontal accelerations a(t) [m/s2] at the five
points along the structure mentioned above (depths z/L = 0.00, 0.25, 0.50, 0.75 and 1.00). These
accelerations are computed using the flexible and rigid BDWF formulations, respectively, and are
compared with the results from the BEM model. It can be seen that the results, in general, show
a good agreement.
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Figure 5: Actual flexibility assumption. Comparison between accelerations a(t) [m/s2] at differ-
ent depths z/L of the buried structure computed with the BEM and Beam-on-Dynamic-Winkler
models. L = 60m, Vs = 500m/s, δ = 0.0, L/D = 3 (left) and 8 (right).

More importantly for this study, figures 7 and 8 present verification results in terms of the
response spectra, where the differences related to the methodology are more visible than in time
acceleration response. As expected, the BDWF simplified models provide better results for the
more slender structure (L/D = 8) than for the less slender. In both cases, the results provided
by the BDWF simplified models are quite close to those provided by the more rigorous 3D BEM
formulation, except for the top and bottom points and the less slender structure (L/D = 3) where
the magnitude of the error reaches 20%. When there appear differences, the BDWF models provide
a spectral response that is always higher than the one computed by the more rigorous 3D BEM
formulation. In any case, it is worth noting that the tendency of both models is the same when
shifting between the flexible and the rigid structure hypothesis, i.e, if the spectral response of the
system according to the BEM formulation increases when changing from the flexible structure to
the rigid structure, the response provided by the BDWF increases too, and in the proportion, and
vice versa. Therefore, the simplified BDWF model is considered to be a valid tool for the parametric
analysis proposed in this paper.
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Figure 6: Rigid body assumption. Comparison between accelerations a(t) [m/s2] at different depths
z/L of the buried structure computed with the BEM and Beam-on-Dynamic-Winkler models.
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z/L of the buried structure computed with the BEM or Beam-on-Dynamic-Winkler models. L =
60m, Vs = 500m/s, δ = 0.0, L/D = 3 (top) and 8 (bottom).

5 Results

The amount of results obtained from the parametric analysis described in section 2 is significantly
large, and need to be synthesized in order to be useful to the principal aim of the present study,
which is, as stated before, presenting a criterion to decide when is the hypothesis of infinity rigidity
valid for a large buried structure subject to seismic action. First, a cut–off value for the average
error (as defined in equation (1)) must be established as the maximum error for which the rigid
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Figure 8: Rigid body assumption. Comparison between response spectra at different depths z/L of
a buried structure obtained from the BEM or rigid Beam-On-Dynamic-Winkler models. L = 60m,
Vs = 500m/s, δ = 0.0, L/D = 3 (top) and 8 (bottom).

approach can still be considered adequate for the problem at hand. For practical applications, and
taking into account the uncertainties associated to data and models, an average error below 10% is
considered acceptable and is used as limit value to synthesize the results of the parametric analysis
as described below.

Thus, figures 9 and 10, corresponding to hollow (δ = 0.85) and solid structures, respectively,
distinguishes the configurations (in terms of L/D and Vs values) for which the above-mentioned
average differences ǭ(z) are below or above 10%. More precisely, configurations for which ǭ(z) >
10% are those within the filled areas. Each figure contains two subsets of plots, the top one
corresponding to the average differences computed along the low-periods branch of the response
spectrum (Ti 6 TB), and the bottom one corresponding to the intermediate-periods branch (TB 6

Ti 6 TC). Results for the high-periods branch (TC 6 Ti 6 TD) are not presented because averages
differences are always below 10%. Within each subset of plots, the first, second and third rows
correspond, always, to structures embedded L = 40, 60 and 80m respectively, while the five columns
correspond to the points along the structure where this average difference is computed (z/L =
0.00, 0.25, 0.50, 0.75 and 1.00). In each plot, horizontal and vertical axes are the surrounding soil
shear wave velocity (Vs) and the structure slenderness ratio (L/D), respectively.

A number of conclusions can be drawn from these results. The average errors obtained in the
low-periods branch when using the rigid assumption is much larger than along the intermediate-
periods branch, while they are generally below 10% in the high-periods branch (results not shown)
for the values of the slenderness ratios (L/D) and wave propagation velocity (Vs) considered in
this study. On the other hand, z/L = 0.25 and 1.00 are the depths for which computed discrep-
ancies are smallest, while z/L = 0.50 tend to be the point for which errors are largest. In any
case, discrepancies increase with the embedment length L of the structure, with softer soils and
also, as expected, for more slender structures, although in many cases, and contrary to what was
anticipated, the error is quite independent of the slenderness ratio. The discrepancies also tend to
increase for hollow structures, but this is not always true and, in any case, the differences between
the errors in the solid and hollow configurations are not significant, which allows to propose a
criterion not dependent on this character.

Table 2 synthesizes the results presented in figures 9 and 10 with the aim of serving as a practical
guide for helping to know if the hypothesis of infinite rigidity of a large buried structure (with the
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Figure 9: Filled surfaces represent the configurations (L/D and Vs values) for which ǭ > 10% at
different depths z/L (columns) and for structures of embedment lengths of L = 40, 60 and 80m
(rows). Low-periods (top) and Intermediate-periods (bottom). Hollow structure (δ = 0.85).
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mentioned safety margin of 10%) is applicable when evaluating its seismic response. The criterion
is proposed only for the low- and intermediate-periods branches, as the rigid model is considered
always valid for calculations in the high-period branch. As an application example, consider a
structure with slenderness ratio L/D = 7 embedded in a soil characterized by a wave propagation
velocity Vs = 700m/s (ground type B). Following the criterion defined in table 2, using a rigid
model for computing the response at z/L = 0.25 is always suitable for the embedment lengths
studied herein. However, for a different wave velocity Vs = 400m/s (even if it is the same ground
type), the rigid body assumption is only valid if L 6 40m in the low-periods branch, or L 6 60m
in the intermediate-periods branch.

Table 2: Conditions that should hold for considering the rigid assumption as valid for computing
the spectral seismic response of a buried structure for each spectrum branch and depth of interest
(ǭ(z) 6 10%)

.

Low-periods branch Intermediate-periods branch

z/L = 0 L 6 60 and Vs

L
> 12 Vs

L
> 7.5

z/L = 0.25 L 6 40 or 600 6 Vs 6 900m/s L 6 60 or −6 6
(

L
D
− Vs

85

)

6 2

z/L = 0.50 L 6 40 and Vs > 600m/s L 6 60 and Vs

L
> 10

z/L = 0.75 L 6 40 and Vs > 600m/s L 6 40 or Vs

L
> 8

z/L = 1.00 Vs

L
> 10 Vs

L
> 4

Contrary to what is commonly believed, it is therefore not possible to elucidate whether a buried
structure behaves as rigid or not, based only on the slenderness ratio L/D. It is also necessary to
take into account soil stiffness and embedment length, as both parameters are directly related to
the variability of the seismic excitation along the buried structure. Besides, the depth of the point
of study and the value of the period of interest can also influence the type of response.

If the criterion shown in table 2 needs to be simplified even further, it can be said that structures
with slenderness ratios below 6 and embedment lengths below 20 m (L/D < 6 and L < 20 m)
behaves always as a rigid solid, with independence of the stiffness of the soil. On the contrary, for
increasing embedment lengths, soil stiffness becomes the main parameter, with structures behaving
as not rigid for all type C and D soils, and most type B soils, for embedment lenghts of 40 m
(L = 40 m).

6 Conclusions

This piece of research tries to contribute to answer to the following three questions: a) Is it possible
to estimate the seismic response of a large buried structure, in terms of seismic motion, by using
a model in which such structure is represented as a rigid body?, b) when does such simplifying
assumption cease to be valid from an engineering point of view?, c) what simple engineering criterion
can be proposed to determine the validity or not of the use of such simplified model?

In order to address these questions, a parametric study of the seismic response of buried struc-
tures was performed taking into account the more salient features of the problem: structural
slenderness ratio, embedment length, soil stiffness, and structural typology (hollow or solid). The
metodology used is based on the BDWF approach, previously verified by comparison against results
obtained for the problem at hand using a more rigorous 3D multidomain boundary element model.
Future developments of this analysis should study, for instance, the influence of the presence of
soil layers or the influence of different types of non-linearities on the conclusions drawn from the
linear-elastic model used in this paper.

The results are synthesized by computing and presenting average differences between the seismic
spectral responses obtained from a model in which the structure is assumed as a rigid body, or with
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its actual flexibility (i.e., the relative error made by assuming the hypothesis of infinity rigidity
for the structure). That average error is computed separately for each of the branches of the
acceleration response spectra defined in the Eurocode–8 [7], and for different depths along the
structure. The hypothesis of infinity rigidity is assumed to be valid when such errors are below
10%.

The results show that the hypothesis of infinity rigidity for the structure is valid, independently
of slenderness ratio or soil properties, for small embedment lengths or for natural frequencies of
interest found along the branch of high periods of the elastic response spectra. For other situations,
a specific criterion involving embedment length, soil stiffness and slenderness ratio is proposed for
establishing when it is necessary to use models that consider the flexibility of the buried structure.
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Appendix A

Dynamic soil reactions for plane strain case [23]:

Kx = µs
[

Sr
x (ao, νs, ξs) + i Si

x (ao, νs, ξs)
]

=
π

4
µsa

2
o T (A.1a)

Kθ = µsD
2
[

Sr
θ (ao, νs, ξs) + i Si

θ (ao, νs, ξs)
]

=
π

4
µsD

2 (1 + 2ξsi)

[

a∗o
K0 (a

∗
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K1 (a∗o)
+ 1

]

(A.1b)

where the dimensionless frequency-dependent factor

T = −
4K1 (b

∗

o)K1 (a
∗

o) + a∗oK1 (b
∗

o)K0 (a
∗

o) + b∗oK0 (b
∗

o)K1 (a
∗

o)

b∗oK0 (b∗o)K1 (a∗o) + a∗oK1 (b∗o)K0 (a∗o) + a∗ob
∗

oK0 (b∗o)K0 (a∗o)
(A.2)

being Kn the modified Bessel Functions of the second kind and order n with complex arguments:

a∗o =
a∗oi

2
√
1 + 2ξsi

; b∗o =
a∗oi

2ψ
√
1 + 2ξsi

where ψ =

√

2 (1 + νs)

1− 2νs
(A.3)

NOTE: The differences regarding this equations in Novak et al. [23] have to do with the dimen-
sionless frequency (ao = ωD/Vs) used in this work.

Appendix B

The exppressions of Veletsos and Verbič [33] for the impedance functions (rigid circular footing on
a halfspace) applied in the bottom of structure:

K̃j (ao, νs) = σj [kj (ao, νs) + iaocj (ao, νs)] ; j = x, θ (B.1)
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where kj and cj represent frequency-dependent stiffness and damping coefficients, approximated
with the following expressions:

kx = 1 (B.2a)

cx = a1 (B.2b)

kθ = 1− b1
(b2ao)

2

1 + (b2ao)
2
− b3a

2
o (B.2c)

cθ = 2b1 b2
(b2ao)

2

1 + (b2ao)
2

(B.2d)

where a1, b1, b2 and b3 are coefficients that depend of νs and whose values are a1=0.33, b1=0.5,
b2=0.4 and b3=0 (taken from Table I in Veletsos and Verbič [33] for νs = 1/3). Finally, σj is the
dimensionless static stiffness that take the following expressions for swaying and rocking problems:

σx =
4

2− νs
; σθ =

1

3 (2− νs)
(B.3)

NOTE: In this appendix also the differences regarding this equations and coefficients in Veletsos
and Verbič [33] have to do with the dimensionless frequency (ao = ωD/Vs) used in this work.
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