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Abstract

This paper introduces a numerical model to obtain the time-harmonic dynamic
response of pile foundations in non-homogeneous soils. The model is based on the
integral formulation of the elastic problem and the use of Green’s functions for
the layered halfspace, and considers the soil as a group of zoned homogeneous,
linear, isotropic, viscoelastic layers. The piles, on the other hand, are treated by
finite elements as Timoshenko beams. Both formulations are coupled through the
required compatibility and equilibrium equations along each pile. After being val-
idated against previous results from the literature, the model is used to study the
effects of soil non-homogeneity on the impedance functions of inclined piles and
pile groups by considering different soil profiles whose properties vary with depth
following a generalized power law. The impedance functions for three representa-
tive non-homogeneous soils are presented and compared with the ones of related
homogeneous soils. Significant differences appear between the two situations for
all studied rake angles. The magnitude of these differences strongly depends on
the frequency range considered, specially for the case of pile groups, which shows
the necessity of analysing the problem using soil profiles as close as possible to the
actual depth-varying ones.
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1 Introduction

In situations where loads with great horizontal components are present inclined piles are
used in combination with vertical piles to increase the foundation lateral stiffness. For the
last decades, the use of inclined piles in seismic events have been strongly discouraged by
several codes [1, 2] due to the bad performance observed in various earthquakes during the
90’s. Nevertheless, in the last years the use of inclined piles has increased again and some
studies have revealed that they might have a beneficial effect not only for the foundation,
but for the superstructure too [3–6]. However, further study is needed in order to achieve
a better understanding of the dynamic behaviour of raked pile foundations.

Despite the fact that seismic response of inclined piles has been the object of analysis
for different studies [e.g. 5–10], the impedance problem of this type of pile foundation has
received little attention. Impedance functions for specific configurations of inclined pile
groups were studied by Mamoon et al. [11] for a 3 × 3 pile group with a rake angle of
θ = 15o. Padrón et al. presented a complete set of impedance functions for configurations
of single piles and pile groups embedded in an homogeneous halfspace [12] and in a soil
layer resting on a bedrock [13]. A strong dependence on the configuration and rake
angle was found for the group impedances, specially in the rocking and cross horizontal-
rocking ones. Model tests on a single battered pile [14] and a 2 × 2 group [15] in dry
cohesionless soil were carried out by Goit and Saitoh. In the first study, a comparison
with a FEM numerical model was made, while in the latter the effects of soil non-linearity
were analysed. In their recent work, Dezi et al. [16] introduced a numerical model for the
analysis of pile foundations in layered soil deposits and presented impedance functions for
2× 2 inclined pile groups embedded in an homogeneous soil deposit and in a two-layered
soil deposit over a rigid bedrock.

In the aforementioned papers only homogeneous halfspaces or up to two-layered soil
deposits were considered. However, real soils can present properties that vary with depth
and the assumption of soil homogeneity can lead to misleading predictions of the founda-
tion behaviour in the actual profile. Up to the authors’ knowledge, only Giannakou et al.
[17] have presented dynamic impedances for a single inclined pile in a soil profile whose
properties vary continuously with depth.

For vertical pile foundations in non-homogeneous soils, the impedance problem has
been studied by several authors with different methodologies. Velez et al. [18] employed
a FEM formulation to obtain the lateral impedance of a single end-bearing pile in a non-
homogeneous soil deposit overlaying a rigid bedrock. The results for the non-homogeneous
media were compared against the ones corresponding to an ‘statically equivalent’ homo-
geneous deposit, showing that the static equivalence does not guarantee identical pile re-
sponse under dynamic loads. Kaynia and Kausel [19], followed by Miura et al. [20], used
a three-dimensional formulation based on Green’s functions of cylindrical loads in layered
semi-infinite media and presented a wide set of results for single piles and pile groups
embedded in different soil profiles. Their results revealed that the horizontal impedance
is more affected by near-surface soil properties than the vertical one, and that the in-
teraction effects between the group piles are more pronounced in the non-homogeneous
medium. Mylonakis and Gazetas [21, 22] presented a Winkler model to solve this prob-
lem. For pile groups, the pile-soil-pile effects were considered through interaction factors
[23, 24] which relate the response of a ‘receiver’ pile to the oscillation of a near (‘source’)
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pile. The behaviour of the non-homogeneous media was represented by a transfer-matrix
formulation [25, 26]. The same methodology has been used by other authors to handle the
impedance problem in non-homogeneous media [27–29]. In their recent work, Rovithis
et al. [29] studied the lateral impedance of a single pile in a soil profile with properties
varying according to a power law. Their results showed that lateral damping is overesti-
mated when using the homogeneous assumption, leading to an un-conservative evaluation
of the lateral pile deflections at high frequencies. This conclusion agrees with the results
obtained by Giannakou et al. [17] for a lineal-varying non-homogeneous soil with a FEM
model.

2 Efficient integral model for the dynamic analysis of

inclined piles foundations

This paper describes an efficient model for the computation of impedance functions of
inclined piles and pile groups in layered soils. The presented procedure is inspired by a
previous formulation developed by Padrón et al. [30, 31], now using the Green’s functions
developed by Pak and Guzina [32] for the layered halfspace instead of the fundamen-
tal solution for the homogeneous entire space [33]. These Green’s functions verify the
free-surface, layer interfaces and radiation conditions. Thus, the proposed model avoids
the need to discretize any boundary, which significantly reduces both the computational
requirements and the numerical errors derived from the surface meshing. The model can
be applied to study soils whose properties vary continuously with depth by modelling the
continuous non-homogeneity through multiple zoned-homogeneous horizontal layers.

2.1 Model hypotheses

Inclined piles are modelled by finite elements as Timoshenko beams with hysteretic damp-
ing and neglecting their torsional resistance, while soil is considered as a semi-infinite
region with different homogeneous, linear, isotropic, viscoelastic horizontal layers. The
soil complex shear modulus µs is defined by the hysteretic damping coefficient β, as
µs = Re[µs](1+ 2βi), being i the imaginary unit. Welded boundary contact conditions at
the pile-soil interfaces are assumed.

The proposed model assumes that soil continuity is not altered by the presence of piles,
considering the tractions in the pile-soil interface as loads applied within the halfspace in
the integral representation of the soil. This idea has already been used by previous static
[34–36] and dynamic [30, 31] models.

2.2 Piles equations

The differential equation that determines the pile behaviour under dynamic loads has the
following expression:

Mü(t) + Cu̇(t) + Ku(t) = f(t) (1)

where M, C and K are the mass, damping and stiffness matrices respectively, u(t) the
vector of nodal displacements and f(t) the vector of external nodal loads. Considering
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harmonic loads (u(t) = ueiωt and f(t) = Feiωt) and hysteretic damping defined by the
pile damping coefficient ζ :

K∗ = K(1 + 2ζ i) (2)

eq. (1) can be expressed as:

K̄u = F with K̄ = K∗
− ω2M (3)

where u and F are the vectors of nodal displacements and loads amplitudes and ω the
excitation frequency.

Figure 1: FEM pile elements. (a) Definition of degrees of freedom. (b) Linear approxi-
mation of tractions along the elements

Piles are discretized into 10 degrees-of-freedom 2-noded elements (Fig. 1(a)). Cubic
shape functions for lateral displacements and quadratic shape functions for rotations,
all satisfying the homogeneous static equation of the Timoshenko beam, are used [37].
For longitudinal displacements, linear shape functions are used. The stiffness and mass
(translational plus rotational) matrix coefficients are obtained through the Hamilton’s
principle and are detailed together with the shape functions in [37]. As the piles are
assumed not to affect the soil continuity, a reduced density must be considered for the
piles (by subtracting the soil density: ρ̄p = ρp − ρs) in order not to overestimate the total
system mass. A similar consideration was assumed in [24, 30].

The external forces acting over the pile can be separated into:

F = Ftop + Feq (4)

where Ftop are the external forces at piles head and Feq are the equivalent nodal forces
due to the soil-pile interaction which are obtained as Feq = Q qp, where Q is the matrix
that transforms nodal values of distributed tractions along the pile (qp) into equivalent
nodal forces.

The coefficients of the matrix Q are obtained by using the principle of virtual displace-
ments and the traction and displacement shape functions. As the soil-pile interaction
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distributed tractions qp over the pile are modelled by linear shape functions (Fig. 1(b)),
the lateral and axial components of the matrix are:

Ql =
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being Le the pile element length and φ the ratio of the beam bending stiffness to the shear
stiffness defined by:

φ =
24Ip

L2
eαAp

(1 + νp) (6)

where Ip is the pile moment of inertia, Ap is the pile cross-section area, νp is the pile Pois-
son’s coefficient and α is the shear coefficient that depends on the cross-section geometry,
being α = 0.9 for solid circular cross-sections. Note that for the yz plane the sign of the
second and fourth rows of Ql change due to the reference system used.

With all these considerations, the final FEM equation is of the form:

K̄u−Qqp = Ftop (7)

where matrices K̄ and Q are global matrices obtained through the common assembly
process of the corresponding elemental matrices. Pile inclination is handled through pre-
and post- multiplying these elemental matrices by the appropriate rotation matrices.

2.3 Pak and Guzina’s 3D Green’s functions for a multilayered

half-space

The benefits of the use of particular Green’s functions in integral formulations of this
problem was already observed, e.g., in the work of Matos Filho et al. [36], where the
static halfspace Green’s functions proposed by Mindlin [38] were used as fundamental
solution, or previously, in the already mentioned work of Kaynia and Kausel [19] for piles
driving in multilayered soils in dynamic regime.

In the model presented herein, the three-dimensional Green’s function for the multi-
layered half space in time-harmonic dynamics has been implemented based on the solution
developed by Pak and Guzina. The solution was published for the first time in [32], with
important details in [39] and [40]. The main advantage of this solution comes from the
fact that the propagator matrices include only bounded exponentials, avoiding numerical
instabilities. The solution is built in three steps: i) displacement potentials; ii) angular
Fourier transform; iii) radial Hankel transform. The computation of displacements and
tractions requires a particular integration procedure to evaluate the inverse Hankel trans-
form [32]. Also, a particular modification of the integration procedure, required at low
frequencies, has been included based on the single layer solution derived by Mart́ınez-
Castro and Gallego [41].

These Green’s functions were selected over other possibilities because of their numer-
ical accuracy and fast convergence, due to the particular formulation of the propagation
matrices involved, which are free of unbounded exponentials. However, other Green’s
functions for the layered halfspace can be found both for static [e.g. 42, 43] and dynamic
[e.g. 44, 45] regimes.
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2.4 Soil equations

The soil response is calculated through the dynamic reciprocal theorem [46], that allows
to obtain an elastodynamic state by using another known solution. The known state used
in this work is the Green’s fundamental solution mentioned before. Attending to both the
model and fundamental solution considerations, the dynamic reciprocal theorem integral
expression simplifies to:

uκ =

∫

Γl

u∗q
s
l dΓl (8)

where uκ is the vector of displacements of the collocation point (κ), u∗ the tensor that
contains the fundamental solution when the unit load is placed at point κ and qs

l are the
tractions along the load line Γl.

The tractions qs
l can be considered as the tractions at the soil-pile interface due to the

soil-pile interaction experimented by the soil, while the displacements of the load line u

correspond to the mid-line displacements of the piles.
Considering np pile lines and using linear shape functions to approximate the tractions

along the soil-pile interface, eq. (8) can be rewritten into:

uκ =

np
∑

m=1

Gmq
s
m (9)

where the matrix Gm is obtained by integration of the fundamental solution times the
shape functions over the pile m through a standard Gaussian quadrature and qs

m is the
vector containing the nodal values of the soil-pile tractions corresponding to the pile m.

The integral of the fundamental solution becomes singular when evaluated at the load
line to which the collocation point belongs. To avoid this situation, a non-nodal collocation
strategy using points on the fictional pile-soil interface is carried on as in Padrón et al. [12].
To satisfy the problem symmetry, four collocation points symmetrically placed around the
pile axis are used as depicted in Fig. 2 (a). Considering the equations of displacements
and rotations of the pile section to express the displacements of the collocation points in
terms of those at the central nodes, and adding the resulting four sets of equations, eq.
(9) for each pile node n becomes:

4u(n) =

4
∑

k=1

np
∑

m=1

Gk
mq

s
m (10)

where Gk
m is the matrix Gm when the unit load is placed at the interface point k =

1, 2, 3, 4.
This equation is applied to all pile nodes. However, for the first node (i.e. superficial

node) of inclined piles, eq. (10) needs to be modified as the collocation strategy leads to
collocation points placed out of the soil domain. As the fundamental solution is only de-
fined for points within the soil, eq. (10) must be applied to an inner point c of the first pile
element instead of to the first node, as illustrated in Fig. 2 (b). Then, the displacements
of the inner point c are expressed in terms of the ones of the nodes of the first element
through 3×10 matrix Ψ, which contains the corresponding shape functions (evaluated at
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Figure 2: Non-nodal collocation strategy

the element local coordinate ξc) pre- and post- multiplied by the corresponding rotation
matrices. Considering this, the discretized equation at such node becomes:

4Ψ

{

u(1)

u(2)

}

=

4
∑

k=1

np
∑

m=1

Gk
mq

s
m (11)

Finally, the global soil equation can be expressed as:

4Υu = Gqs (12)

where Υ is a band matrix that contains either elements from Ψ3×10 or I3×3 depending on
whether the corresponding equation is written for the first node of an inclined pile or not,
and G is the global matrix obtained through the assembly of the elemental ones.

2.5 Soil-piles coupling

The presented formulations are coupled by imposing compatibility (u) and equilibrium
(qs = −qp) conditions along the pile lines. With these considerations, eq. (7) and (12)
lead to the equation system:

[

K̄ −Q

4Υ G

]{

u

qp

}

=

{

Ftop

0

}

(13)

that can be solved once boundary conditions (i.e. prescribed displacements or forces at
pile top) are applied and the terms of the corresponding variables are rearranged.
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3 Results

3.1 Soil definition

The soil profile is modelled as a viscoelastic unbounded region with constant density ρs,
constant Poisson’s ratio νs, constant hysteretic damping coefficient βs and a varying shear
wave velocity that increases continuously with depth along the pile length following the
generalized power law function [47]:

cs(z) = crs

(

b+ q
z

zr

)n

(14)

where b, q, n are dimensionless parameters that determine the soil non-homogeneity and
zr, crs are the depth and shear wave velocity at the reference point. In the present study,
the reference point is located at the pile tip (zr = L) as assumed by several authors
when treating non-homogeneity [e.g. 19, 20, 29]. However, some other researchers [e.g.
17, 18] consider the reference point at a depth equal to the pile diameter (zr = d). These
assumptions are equally valid but have to be carefully considered when comparing results.

Following Rovithis et al. [47], the general expression (14) can be rewritten in order to
include the shear wave velocity at the surface (c0s) as:

cs(z) = cLs

[

b+ (1− b)
z

L

]n

with b =

(

c0s
cLs

)1/n

(15)

Using this expression, the soil profile depends upon two parameters: the ratio between
the shear wave velocity at the surface and at the pile tip (c0s/c

L
s ) and the non-homogeneity

factor n. This factor is usually considered between 0 and 1, resulting in an homogeneous
media when n → 0 and in a linear variation of the shear velocity when n → 1.

The shear wave velocity is kept constant for depths below the pile tip. As the soil
density and Poisson’s ratio are kept constant for the whole halfspace, the profile can be
also expressed in terms of the soil Young’s modulus as:

Es(z) =

{

EL
s

[

b+ (1− b) z
L

]2n
if 0 ≤ z ≤ L

EL
s if z > L

(16)

where EL
s corresponds to the soil Young’s modulus at the reference point (i.e. the pile

tip). Note that for a non-homogeneity factor n = 0.5, a linear variation with depth of the
soil Young’s modulus is obtained (Gibson soil).

3.2 Dynamic stiffness problem definition

The impedance functions (Kij) are defined as the ratios between the steady-state force
(or moment) applied at the pile cap and the resulting displacement (or rotation). In order
to compute them, a unitary harmonic displacement (or rotation) is imposed to the group
cap so the dynamic stiffness can be calculated by applying equilibrium with the forces
at the pile heads. The impedance function is generally expressed through two frequency
dependent coefficients representing the stiffness (kij) and damping (cij) components:

Kij = kij + cijaoi (17)
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where ao is the dimensionless frequency corresponding to each particular case.

3.3 Verification results

3.3.1 Vertical piles in non-homogeneous media

In order to verify the ability of the presented formulation to address the impedance
problem in non-homogeneous media, the results obtained for vertical elements by Miura
et al. [20] of the horizontal, rocking and vertical impedances of a single vertical pile and
2× 2 and 4× 4 vertical pile groups in different soil types were reproduced.

The parameters that define the properties of the soil and piles are: Young’s modulus
ratio Ep/E

L
s = 100, density ratio ρs/ρp = 0.7, Poisson coefficient νs = 0.4 for the soil and

νp = 0.25 for the piles and soil damping coefficient β = 0.05. The pile group geometry is
defined by: piles aspect ratio L/d = 20 and distance ratio between adjacent pile centres
s/d = 5. Three soil types are used (G1, G2 and G3 following the notation used by Miura
et al.): two non-homogeneous soils with a linear variation of the Young’s modulus value
along the pile length (n = 0.5 with a value of b = 0.1 for G1 and b = 0.4 for G2) and
a homogeneous soil (G3). All soil types keep the Young’s modulus value constant and
equal to EL

s below the pile tip.
For simplicity’s sake, only the comparison corresponding to the 2× 2 group is shown

in Fig. 3, where the stiffness and damping coefficients are presented against the dimen-
sionless frequency ao = ω d/cLs . For the vertical and horizontal impedance problems, the
coefficients are normalized by the pile static stiffness value kij0 times the number of piles.
A different case is the one regarding the rocking impedances, where the contribution of
the vertical static stiffness times the square of the distance to the rotation axis xi is also
included for this purpose. Note that this normalization is used only in this section in
order to reproduce the results of [20]. A good agreement between the two methods can
be seen for all soil types. The largest differences take place for the soil type G1 (the one
with the highest properties variation), particularly for horizontal impedances.

The problems under study consider non-homogeneous soils whose properties vary con-
tinuously with depth (eq. 16); while the Green’s functions used to solve the problem as-
sume a finite number of zoned-homogeneous horizontal layers. Thus, the number of layers
needed to model the continuously-varying soil must be assessed. Fig. 3 also presents
the horizontal impedance functions obtained for different number of layers (nl = 4, 10,
40 and 150), showing that, once a certain number of layer is reached, increasing the soil
subdivision does not have any perceptible effect on the obtained results. The number of
layers needed to achieve convergence depends on soil type, frequency range and problem
type. In general, capturing adequately the impedance functions that involve horizon-
tal components (i.e. horizontal, torsional and horizontal-rocking coupling ones) requires
a larger number of layers: e.g. 30 layers were needed for the accurate computation of
these impedances versus the 10 layers needed for the vertical and rocking problems. This
convergence study has been done for all soil profiles employed in the current work. On
the other hand, the developed model may present numerical instabilities when using very
small elements to represent the piles. In order to avoid this issue, the ratio between the
element diameter and length must be such that d/Le < 1.2. All the results presented in
this work are obtained using an element aspect ratio of d/Le = 1, as a good compromise
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Figure 3: Horizontal, rocking and vertical impedances of a vertical 2 × 2 pile group.
Comparison with the solution presented by Miura et al. [20]

between discretization and numerical stability.

3.3.2 Inclined piles in homogeneous media

On the other hand, in order to verify the implementation in case of the inclined piles, the
impedance functions of a 2 × 2 pile group with inclined members presented by Medina
et al. [48] are reproduced in Fig. 4, where the real and imaginary parts of the normalized
impedances functions are plotted against the dimensionless frequency ao = ωd/cs. The
curves correspond to a foundation with L/d = 15 and s/d = 7.5 with the piles inclined
θ degrees with respect to the vertical axis in the direction of the horizontal excitation.
Pile-soil Young’s modulus Ep/Es = 1000 and density ρs/ρp = 0.7 ratios, soil νs = 0.4
and pile νp = 0.25 Poisson’s ratios and soil hysteretic damping coefficient β = 0.05 are
assumed. The results obtained by the proposed formulation agree very well with the ones
obtained by Medina et al. using their BEM-FEM model.

3.4 Geometry and problem properties definition for the inclined

pile foundations studied

The problem under study is sketched in Fig. 5. The foundations consist of one or more
piles of equal length L, diameter d and material properties. In the group configurations,
the space between two adjacent pile centres at cap level is defined by s. The rake angle
θ measures the angle between the pile axis and the vertical.

The configurations studied correspond to the following properties: hysteretic damping
coefficients βs = 0.05 for soil and ζ = 0 for piles; Poisson’s ratios νs = 0.4 for soil and
νp = 0.25 for piles; soil-pile density ratio ρs/ρp = 0.7 and pile aspect ratio L/d = 15. Two
values of pile-soil modulus ratio Ep/E

L
s = 103 and 102 are studied in order to represent

soft and stiff soils.
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Figure 4: Horizontal, rocking and vertical impedances of 2×2 pile group with piles inclined
in the direction of the horizontal excitation. Comparison with the solution presented by
Medina et al. [48]

Results for the rake angles θ = 0o, 10o, 20o and 30o are presented. The pile orientation
can be parallel or perpendicular to the direction of excitation or along the cap diagonal
(as indicated in each figure). For pile groups, separations between piles of s/d = 5 and
10 are considered.

3.5 Impedance functions for inclined piles in non-homogeneous

media.

In order to study a wide set of non-homogeneous media, four values of the ratio between
shear wave velocity at surface and pile tip (c0s/c

L
s = 0.7, 0.5, 0.25 and 0.1) are combined

with three values of the non-homogeneity factor (n = 0.3, 0.5 and 0.9) resulting in 12
different soil profiles. In addition, impedances for the homogeneous soil are also computed
so they can be used as reference values.

As the number of soil profiles is relatively large, and some of them yield similar results,
four representative soils are chosen after having computed and compared all impedance
functions. For this purpose, soil profiles that present similar impedance curves are grouped
together, and the representative profile is selected as the closest to the group mean value.
For this clustering process all of the configurations introduced in section 3.4 were consid-
ered. Fig. 6 shows the final soil clusters and their respective representative profiles (black
solid lines).The variation of the shear wave velocity along the pile length is presented.
The soil groups are arranged from left to right in ascending order of non-homogeneity.

In the following sections, normalized horizontal Khh/Ēsd, rocking Krr/Ēsd
3, vertical

Kvv/Ēsd, torsional Ktt/Ēsd
3 and horizontal-rocking coupling Khr/Ēsd

2 impedance func-
tions are presented as functions of the dimensionless frequency āo = ωd/c̄s. The mean
shear wave velocity along the pile length c̄s is used in order to handle the depth-varying
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Figure 5: Problem definition
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Figure 6: Soil profiles in terms of shear wave velocity. Each subplot presents all profiles
yielding very similar impedance functions for the configurations proposed in section 3.4.
The profile chosen as representative in each case is shown in black solid line

profiles:

c̄s =
1

L

∫ L

0

cs(z) dz (18)

In coherence with the normalization of the frequency, the mean value of the soil Young’s
modulus along the pile length Ēs is used to obtain a dimensionless expression of the
impedance functions. Due to space limitation, only a few of the obtained results are
displayed. Thus, from the configurations of section 3.4, only impedance functions for
single inclined piles and 3×3 inclined pile groups oriented both parallel and perpendicular
to the horizontal component with a separation distance of s/d = 5 are presented for the
representative soil profiles defined before. The 3×3 group is selected as its results clearly
illustrate the effects of the soil non-homogeneity on the dynamic impedances of the pile
groups. On the other hand, the case with inclination along the cap diagonal is omitted as
its results can be extrapolated from the results corresponding to the two configurations
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shown. Nevertheless, the impedance functions for all of the configurations described in
section 3.4 can be found as additional material in the online version of this paper.

3.5.1 Inclined single pile impedance functions

Fig. 7 presents the impedance functions for a single pile inclined in the direction of the
horizontal excitation. Note that for the rocking and horizontal-rocking cross impedances
only the curves corresponding to vertical piles are presented as they are virtually insensi-
tive to the rake angle.

The definition of the dimensionless frequency in terms of the mean shear wave ve-
locity causes that the curves of the different soil profiles present similar evolutions with
frequency, only scaling its value depending on the profile. For the horizontal impedance
term, lower stiffness values are found as the soil non-homogeneity (as defined above) in-
creases. The opposite effect is seen for the vertical, rocking and coupled terms, for which
the normalized stiffness is higher for the non-homogeneous profiles.

The damping coefficients, on the other hand, present slightly smaller values as the
soil non-homogeneity increases. This imply that, for non-homogeneous soils, the damping
term is lower than the one corresponding to the homogeneous assumption, agreeing with
the findings of previous works [17, 29]. This effect is manifested for all the angles of
inclination. The only exception is found for the rocking and cross horizontal-rocking
impedance functions, for which the damping component strongly increases depending on
the soil non-homogeneity in the same sense as the stiffness term.

Regarding the effects of the rake angle: the horizontal impedance increases as the pile
inclination augments due to the participation of the pile axial stiffness. This also explains
why the vertical impedance decreases as the rake angle augments. This coupling between
the horizontal and vertical components produces a horizontal-vertical cross impedance
term arising for inclined piles. Contrary to what is found for the rest of impedance terms,
the evolution with the frequency of the stiffness component of the vertical and horizontal-
vertical cross impedances follows different trends depending on the soil stiffness: for soft
soils (Ep/E

L
s = 1000), a reduction of the stiffness is seen as the frequency increases;

while for stiff soils (Ep/E
L
s = 100), those stiffness terms augment continuously with this

parameter.

3.5.2 Inclined 3× 3 pile group impedance functions

Figs. 8 to 12 show the normalized impedance functions for the 3×3 pile groups with
inclined elements for the studied soil profile sets. In general, the effects of the soil profile
are the same for all of the group impedance functions: an average reduction in the stiffness
and damping components and an increase in their dependence on the frequency as the
soil non-homogeneity increases. These trends are the same for the curves corresponding
to stiff (dashed lines) and soft soil configurations (solid lines).

The peaks on the impedances curves, produced due to resonance in the interaction
between near piles, take place at smaller frequencies as the soil non-homogeneity increases.
This effect make sense considering that if the wave velocity is reduced in the upper
layers, the frequency at which resonance takes place should be reduced too. This effect
is magnified with the increase in the rake angle as the distance between piles augments
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Figure 7: Impedance functions for a single inclined pile in different non-homogeneous
media
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Figure 8: Horizontal impedance functions for a 3× 3 group in different non-homogeneous
media
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Figure 9: Torsional impedance functions for a 3 × 3 group in different non-homogeneous
media
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Figure 10: Vertical impedance functions for a 3 × 3 group in different non-homogeneous
media
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Figure 11: Rocking impedance functions for a 3× 3 group in different non-homogeneous
media
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Figure 12: Horizontal-rocking coupling impedance functions for a 3× 3 group in different
non-homogeneous media
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and, consequently, the frequency must be further reduced. Related to this effect, sharper
peaks in the damping component at these frequencies can be seen as the non-homogeneity
increases. This behaviour produces large differences at high frequencies between the
damping component of the homogeneous media and the ones corresponding to the non-
homogeneous profiles, even when a mean shear velocity is used for the definition of the
dimensionless frequency.

However, the magnitude of the shift in the frequency at which those peaks appear is
much larger for horizontal (Fig. 8) impedances than for the vertical (Fig. 10) modes,
for which the peaks take place almost at the same dimensionless frequency regardless
of the soil profile. Following Miura et al. [20], this can be explained assuming that the
horizontal impedance is more affected by the superficial properties than the vertical one,
which present a higher contribution of deeper soil properties.

Similar behaviour, in terms of frequencies at which the peaks are produced and the
effects of the soil non-homogeneity, is seen between the vertical (Fig. 10) and rocking
(Fig. 11) curves owing to the contribution of the former in the latter. This also happens
between the horizontal (Fig. 8) and torsional (Fig. 9) impedance functions. In all of the
mentioned curves, as the rake angle and the soil non-homogeneity increase, the interaction
between distant piles becomes more important producing that new peaks arise.

Attending to the horizontal impedance curves (Fig. 8), different effects are seen de-
pending on the direction of the pile inclination. When the piles are inclined perpendicular
to the horizontal excitation, the stiffness and damping components decrease slightly with
respect to the vertical pile configuration. On the other hand, if the piles are inclined par-
allel to the excitation, an increment in the impedance functions is found as the rake angle
augments. Furthermore, the inclination of the piles parallel to the horizontal excitation
intensifies the differences in the curve shapes between the studied profiles. Thus, the vari-
ability in the damping functions is highest for θ = 30o. Contrary to what happened for the
single pile impedances, the soil profiles with depth-varying properties produce similar or
even higher values of the maximum damping coefficient; while their stiffness component is
significantly lower when compared to the homogeneous profile. Thus, for pile groups, the
homogeneous assumption does not imply higher damping-stiffness ratios. This effect can
also be seen for the torsional impedance functions, but not for the rest of terms. Note-
worthy is the fact that these conclusions are obtained based on the normalization used: if
the values of Ēs and c̄s used to normalize the frequency and the impedance components
change, the stiffness component will vary in a greater extent than the damping one due
to its definition (eq. 17).

Fig. 10 shows that, with the normalization employed, the vertical impedance functions
for the homogeneous and n = 0.5 soil profiles are very close to each other, although their
maxima do not appear at exactly the same dimensionless frequency. Both stiffness and
damping functions for the most non-homogeneous profile (n = 0.9) converge to the results
for the rest of profiles only for large rake angles (θ ≥ 20o).

Owing to the great contribution of the vertical component to the rocking impedance
functions, the effects of the normalization on the similarity of the curves described in the
previous paragraph can also be seen in Fig. 11. However, these effects are manifested
in a lower extent than for the vertical impedance curves. The rocking impedance curves
strongly depend on the soil profile, presenting more peaks as the soil non-homogeneity
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increases. This influence of the soil profile is stronger for piles with lower angles of inclina-
tion. Contrary to what was found for the horizontal impedance functions, an increase in
the rake angle always produces a reduction in the rocking impedance value regardless of
the direction of inclination. However, different curves are obtained depending on whether
the piles are inclined parallel or perpendicular to the horizontal motion direction.

Regarding the cross horizontal-rocking component (Fig. 12), again different situations
are seen depending on the direction of pile inclination. If the piles are inclined perpendic-
ular to the excitation (bottom figures), the rake angle has virtually no influence on this
impedance component. On the contrary, if the pile inclination is parallel to the excitation
direction (top figures), the magnitude of the impedance values and its sign change as the
angle increases, going from positive values for vertical piles to negative ones for higher
inclination angles. This effect is produced for all the studied profiles.

4 Conclusions

This paper introduces a numerical model for the dynamic analysis of inclined piles founda-
tions based on an integral formulation and the Green’s functions for layered soils developed
by Pak and Guzina [32]. The soil is modelled through the numerical integral approach
while piles are represented by beam finite elements. As there is no need to discretize the
soil surfaces, the presented model is efficient in terms of both computational requirements
(specially memory usage) and mesh uncertainties, allowing its application to a wide va-
riety of soil profiles. Besides, the proposed model can be further developed by including
superstructures to the pile foundations or by considering other excitations such as seismic
waves propagating through the soil (see details in [31]); being this the scope of authors
future work.

The model has been validated against results that can be found in the literature for
vertical piles in non-homogeneous soils [20] and for inclined piles in homogeneous media
[48]. Once validated, the model has been used to obtain the impedance functions for
inclined single piles and 2 × 2 and 3× 3 pile groups with inclined elements embedded in
different soils whose shear wave velocity varies along the pile length following a gener-
alized power law. Attending to the computed results, three soils profiles are selected as
representative of the twelve studied media and their corresponding impedance functions
are compared with the ones of the homogeneous soil. These results are presented in a set
of ready-to-use graphs that can be incorporated for the dynamic analysis of structures
on pile foundations with inclined elements in non-homogeneous profiles. Up to the au-
thors’ knowledge, such a wide set of results covering these configurations has not yet been
published in the literature.

From the analysis of the results presented: the impedance functions have been shown
to strongly depend on the soil profile, which highlights the importance of estimating the
ground real profile and the need of using it to accurately analyse the dynamic response of
the foundation. Evidently, the magnitude of the stiffness functions tend to decrease when
the mean shear wave velocity of the soil profile decreases, with the exception of the ver-
tical mode, for which normalized impedance functions are largely independent of the soil
profile, in the cases studied herein. The damping functions present, in general, the same
behaviour. Also, and again with the exception of the vertical mode, the magnitude of the
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stiffness function peaks and the frequencies at which they appear, decrease significantly
when the non-homogeneity of the soil increases. It is noteworthy that the magnitude of
the differences among the results corresponding to the different profiles diminishes for
large pile rake angles. In any case, the equivalent homogeneous assumption can lead to
impedance values that are significantly away from the ones that correspond to the actual
soil profile depending on the frequency range of interest.
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