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Abstract

This paper aims to contribute to clarify whether the use of battered piles has a positive or neg-
ative influence on the dynamic response of deep foundations and superstructures. For this purpose,
the dynamic response of slender and non-slender structures supported on several configurations of
2× 2 and 3× 3 pile groups including battered elements is obtained through a procedure based on
a substructuring model which takes soil-structure interaction into account. Results are expressed
in terms of flexible-base period and maximum shear force at the base of the structure. Moreover,
modified response spectra considering soil-structure interaction effects are provided for different
rake angles. It is shown that an increment of the rake angle can result in beneficial or detrimental
effects depending on the structural slenderness ratio.

Keywords: Inclined piles, Piled foundations, Soil-structure interaction, Effective period, Effective
damping, Substructure model, Seismic response

1 Introduction

The dynamic behaviour of buildings is affected by kinematic and inertial effects associated to soil-
structure interaction (SSI). Their influence on the fundamental period and damping of soil-structure
systems have been broadly investigated for shallow foundations [1–6] as well as for embedded founda-
tions, either considering only inertial interaction (e.g. [7, 8]) or taking also into account the modified5

foundation input motion defined by kinematic interaction [9–13]. A few studies [14–23] analysing the
effects of SSI on the dynamic characteristics of pile-supported structures can also be found in the
scientific literature . Furthermore, up to the author’s knowledge, only Gerolymos et al. [24] and
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Giannakou et al. [25] have analysed the influence of using deep foundations with inclined piles on the
dynamic response of the structure they support.10

In recent years, inclined piles have recovered their popularity. Indeed, several studies has shown the
beneficial role of battered piles on the seismic response of the structure [24, 26–28]. However, further
research is needed to be able to elucidate in which cases the presence of raked piles is beneficial or
detrimental.

The aim of this work is to evaluate the influence of the rake angle on the dynamic response of15

shear structures founded on square pile groups comprising inclined piles and embedded in homogeneous
viscoelastic half-spaces subjected to vertically incident S waves. The analysis is addressed through a
simple and accurate procedure [23] based on a substructuring model in the frequency domain that
takes into account kinematic and inertial interaction effects. A boundary element-finite element (BEM-
FEM) formulation [29–31] has been used to compute the impedance functions and the kinematic20

interaction factors.
Results for several configurations of 2 × 2 and 3 × 3 pile groups including battered elements are

obtained. The seismic response of the superstructure is presented in terms of the effective period
and the maximum shear force at the base of the structure per effective earthquake force unit Qm.
Moreover, results in terms of effective period and damping are used to build modified response spectra25

for different values of the rake angle.

2 Methodology

The dynamic behaviour of linear shear structures supported on pile groups and subjected to vertically
incident plane S waves is analysed in this paper by using a three-degree-of-freedom (3DOF) system as
the one depicted in Fig. 1a. This system is defined by the foundation horizontal displacement uc and30

rocking ϕc, together with the structural horizontal deflection u.
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Figure 1: (a) Problem definition (b) substructure model of a one-storey structure and (c) equivalent
single-degree-of-freedom oscillator.

The structure is considered to be founded on a square regular group of piles embedded in a
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homogeneous, viscoelastic and isotropic halfspace. Pile heads are constrained to a rigid square cap
of negligible thickness and mass mo, which is free of contact with the ground surface. The moment
of inertia of this pile cap is denoted by Io. All piles have identical geometrical properties defined35

by length L and sectional diameter d. Several configurations of pile groups have been considered in
this study. Each one of them is defined by number of piles, foundation halfwidth b, centre-to-centre
spacing between adjacent piles s and rake angle of piles θ. It is worth noting that some vertical piles
are included in 3× 3 pile groups for the purpose of maintaining symmetry with respect to planes xz
and yz.40

The superstructure consists of massless and axially inextensible columns that support the structural
mass m, which is situated at the height h of the resultant of the inertia forces for the mode of vibration
under study. The moment of inertia of the vibrating mass, which is distributed over a square area, is
denoted by I. Its dynamic behaviour, corresponding to fixed-base condition, is characterized by the
structural stiffness k and its viscous damping ratio ξ.45

The 3DOF system dynamic response, considering kinematic and inertial interaction effects, can be
studied through a substructuring model in the frequency domain such as that represented in Figure
1b. This model consists of a building-cap structure supported on springs and dashpots representing
the soil-foundation stiffness and damping in the horizontal (kxx, cxx), rocking (kθθ, cθθ) and cross-
coupled horizontal-rocking (kxθ, cxθ) vibration modes, respectively. The whole system is subjected to50

the horizontal (ug) and rocking (ϕg) motions measured at the massless pile cap level when subjected
to free-field motion at the surface ugo .

In this paper, a BEM-FEM coupling model [28–31] is used to compute translational Iu = ug/ugo
and rotational Iϕ = ϕgb/ugo kinematic interaction factors, as well as impedance functions at each
frequency ao, which are usually written as Kij = kij + iaocij , where kij and cij are the mentioned55

frequency-dependent dynamic stiffness and damping coefficients, respectively, i =
√
−1 is the imag-

inary unit. The dimensionless excitation frequency is defined as ao = ωb/cs, being ω the excitation
circular frequency, cs =

√

µs/ρs the speed of propagation of shear waves in the halfspace, and µs and
ρs the soil shear modulus of elasticity and mass density, respectively.

Following other authors [2, 3, 8, 12] and in order to characterize the soil-foundation-structure60

system, other dimensionless parameters, covering the mean features of SSI problems, has been used.
These are: (1) structural slenderness ratio h/b; (2) fixed-base structure damping ratio ξ; (3) dimen-
sionless fixed-base natural frequency of the structure λ = ωn/ω; (4) foundation-structure mass ratio
mo/m; (5) wave parameter σ = csT/h (that measures the soil-structure relative stiffness); (6) mass
density ratio δ = m/(4ρsb

2h) between structure and supporting soil; (7) Poisson’s ratio νs; and (8)65

damping ratio ξs of the soil. A hysteretic damping model of the type µs = Re[µs](1+2iξs) is considered
in this study for the soil material.

The dimensionless parameters used to characterize the pile foundation are: pile spacing ratio
s/d, pile-soil Young’s modulus ratio Ep/Es, size of the square pile group, embedment ratio L/b, pile
slenderness ratio L/d, dimensionless frequency ao, soil-pile densities ratio ρs/ρp and rake angle θ.70

A simple and accurate procedure developed by Medina et al.[23] is used in this paper to determine
the dynamic characteristics of an equivalent single-degree-of-freedom (SDOF) oscillator (Fig. 1c)
which reproduces, as accurately as possible, the response of the 3DOF system shown in Fig. 1b within
the range where the peak response occurs. This response is expressed in terms of Q = |ω2

nu/(ω
2ugo)|,

which represents the ratio of the shear force at the base of the structure to the effective earthquake75
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force. The equivalent SDOF system can be defined by its damping ratio ξ̃ and its undamped natural
period T̃ .

The effective period T̃ /T = λ̃ = ωn/ω̃n can be found as the root of Eq. (1), being ω̃n the undamped
natural frequency of the equivalent oscillator. The effective damping ξ̃ can be obtained from Eq. (2).
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where D = D(ω) = −Kxθ/Kxx represents the virtual depth of the point at which the soil-foundation
interaction must be condensed to obtain a diagonal impedance matrix.

Finally, the maximum shear force at the base of the structure per effective earthquake force unit
Qm is obtained as85
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3 Results

The procedure explained above is applied in this section to the study of the influence of using deep
foundations with inclined piles on the seismic response of the superstructure. Such influence is mea-
sured here in terms of the effective system period T̃ /T , the maximum shear force at the base of the
structure per effective earthquake force unit Qm and the elastic response spectra.90

Table 1: Values for the dimensionless parameters in the cases under investigation

νs ξs Ep/Es ρp/ρs L/b L/d
s/d

ξ δ 1/σ mo/m h/b
2× 2 3× 3

0.4 0.05 103 0.7 2
7.5 3.75 2.5

0.05 0.15 0− 0.5 0 1, 2, 5, 1015 7.5 5
30 15 10

Results for different soil-foundation-structure systems as described in Section 2, are studied in
the frequency range of interest for seismic loading (ωd/cs < 0.5, according to Gazetas et al. [32]).
The dimensionless parameters corresponding to these configurations are listed in Table 1. These
values are representative for typical buildings and soils [12, 33] and are related to those studied in
Medina et al. [23], whose aim was analyzing the influence of the pile foundation on the dynamic95

response of the soil-foundation-structure system, and where several values of the embedment ratio
L/b were considered. In contrast, the present work aims to analyse the effect of inclined piles on the
structural response (by means of an additional parameter θ representing the rake angle) and, therefore,
an intermediate value of this parameter L/b = 2 has been chosen as representative. Regarding the
structural slenderness ratio h/b, the range of values taken into account is similar to those considered100

in previous studies [2, 12, 23, 25]. The varying values of the pile spacing ratio s/d are chosen in order
to make the different results more comparable among each other by keeping the foundation halfwidth
b constant for configurations with different number of piles. The foundation halfwidth is defined as
b = s for 2 × 2 pile groups and b = 3s/2 for 3 × 3 pile groups. Four different rake angles have been
considered: θ =0° (vertical piles), 10° , 20° and 30° .105

3.1 Effective period

Figs. 2 and 3 present T̃ /T as a function of 1/σ for different rake angles θ, which illustrates the influence
of the rake angle on the system effective period for the different configurations of 2× 2 and 3× 3 pile
groups under study. Discrete points to be read on the right axis provide a zoomed view in those cases
in which it is necessary.110

For short and squat buildings (h/b = 1), in which the horizontal displacement is the controlling
factor, the system period decreases for higher rake angles. This is because an increment of the rake
angle leads to an increase of the horizontal stiffness due to the contribution of the pile axial stiffness
to withstand the lateral loads. In order to illustrate this effect, Fig. 4 present the impedances of three
different 2 × 2 pile groups with L/d = 7.5 (left column), L/d = 15 (central column) and L/d = 30115

(right column). The stiffness values kij are represented with solid lines to be read on the left axis,
whereas the damping values cij depicted with dashed lines to be read on the right axis.
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Figure 2: Effective period T̃ /T for different 2 × 2 pile groups. Ep/Es = 1000 and ξs = 0.05. Solid
lines to be read on left axis. Dotted lines to be read on right axis when a zoomed view is needed.

In the case of slender structures (h/b = 10), the effect of the rake angle on the system period
depends on the variation of the rocking stiffness as well. An increment of the rake angle generally
leads to a decrease of the rocking impedance (second row in Fig. 4). This results from the fact that120

vertical impedance of single piles experiences a reduction when piles are inclined. Exceptionally, in
those cases with little spacing between adjacent piles (left column in Fig. 4) the pile-soil-pile interaction
effect takes predominance over that of inclination and the vertical impedance of each pile increases
with the rake angle since the distance between the pile tips widens with depth. Thus, in those cases
in which the increase of the rake angle leads to a reduction of the rocking stiffness (L/d = 15 and125

L/d = 30), the system period experiences an increase with θ. Accordingly, a reduction of the system
period results from the increase of the rake angle when L/d = 7.5 since the rocking stiffness increases
in this case.
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Figure 3: Effective period T̃ /T for different 3 × 3 pile groups. Ep/Es = 1000 and ξs = 0.05. Solid
lines to be read on left axis. Dotted lines to be read on right axis when a zoomed view is needed.

3.2 Maximum structural shear forces

Figs. 5 and 6 depict the system response of structures founded on 2 × 2 and 3 × 3 pile groups, in130

terms of the maximum shear force at the base of the structure per effective earthquake force unit Qm.
Dotted lines to be read on the right axis provide a zoomed view in those cases in which it is necessary.

For short and squat buildings (h/b = 1 and h/b = 2), the increment of the rake angle results in
lower values of the maximum shear force at the base of the structure. This effect is due to several con-
current factors: an increase of the horizontal damping cxx, a reduction of the translational kinematic135

interaction factor, (which predominates for non-slender structures) and an increase in the horizontal
stiffness of the foundation which leads to a reduction of the effective period which, in turn, entails an
increment of the dissipated energy which contributes to reduce Qm.

In the case of slender structures (h/b = 10), an increase of the rake angle leads to slightly greater
values of Qm due to the reduction of the rocking damping cθθ and to the increment of the overturning140

moment, which is the controlling factor in these cases.
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Figure 4: Impedance functions of different 2× 2 pile groups. Ep/Es = 1000 and ξs = 0.05. Solid lines
to be read on left axis. Dashed lines to be read on right axis.

Fig. 5 allows to show the extent to which kinematic interaction influences the system dynamic
response. To this end, results involving both kinematic and inertial interaction or only inertial inter-
action are represented. It can be seen that the ability of the foundation to filter the seismic input
has significant effects on the variation of Qm. All configurations under study show a reduction of145

the translational kinematic interaction factor Iu for higher rake angles, as illustrated in Fig. 7, that
presents kinematic interaction factors for three different 2×2 pile groups with L/d = 7.5 (left column),
L/d = 15 (central column) and L/d = 30 (right column). Generally, Iϕ increases significantly with
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Figure 5: Maximum structural response value Qm for different 2× 2 pile groups. Ep/Es = 1000 and
ξs = 0.05. Dotted lines to be read on right axis provide a zoomed view.

θ for large pile-to-pile separation ratios such as s/d = 5, 7.5, 10, 15, except for small rake angles [28].
However, for small pile-to-pile separation (L/d = 7.5 and s/d = 2.5 or s/d = 3.75) the rotational150

kinematic interaction factor Iϕ of inclined piles is smaller than the one corresponding to vertical piles
for all rake angles within the range under study.

A minimum cap rotation can be achieved by inclining piles a small rake angle as θ =1° or θ =3° [28].
It might accordingly be inferred that a minimum value of the maximum shear force at the base of the
structure Qm could be reached for these rake angles. However, this does not occur (results not shown155

for the sake of brevity) because even though the rotational kinematic interaction factor Iϕ increases
with the rake angle, as shown in Fig. 7, so does the horizontal damping cxx (see Fig. 4) which leads
to a reduction of Qm as the rake angle θ increases.

Regarding the relationship between the geometric and mechanic properties of the foundation,
one could think that the geometric point where the extension of the raked pile axes meet above160

the cap hp = s/(2 tan θ) could be close to the center of stiffness of the pile group, computed as
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Figure 6: Maximum structural response value Qm for different 3× 3 pile groups. Ep/Es = 1000 and
ξs = 0.05. Dotted lines to be read on right axis provide a zoomed view.

D = −Re[D] = −Re[−Kθx/Kxx] (see Fig. 8), in which case the seismic response of a structure should
be closely related to the relationship h/hp between the height of the center of mass of the building
(or corresponding effective modal height h) and the height of the geometric point hp. This would
imply different structural behaviour for buildings with heights such that h/hp > 1 and for those with165

heights such that h/hp < 1. In order to test this hypothesis, Figure 9 shows hp/d and D/d for several
configurations of 2 × 2 pile groups and rake angles θ between 0°and 30° . The values of D/d have
been obtained in two alternative ways: for ao = 0 (central plot) as well as for those values of the
dimensionless frequency ao at which the maximum shear force at the base of the structure Qm occurs
(see right plot for 1/σ = 0.3). The comparison between the central and right plots of Figure 9 shows170

that there exist no significant differences between the computation of the centre of stiffness from the
static stiffnesses (usual hypothesis) or from the resonant values. The same conclusions applies to all
configurations analyzed by the authors.

In the case of vertical piles (θ = 0° ) the axes of both piles never meet above the cap so hp → ∞
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Figure 7: Kinematic interaction factors of different 2× 2 pile groups. Ep/Es = 1000 and ξs = 0.05

whereas D/d takes negative values. From this situation, and as the rake angle increases, hp/d decreases175

while D/d increases, even becoming positive. However, they do not cross each other in the range under
study. In fact, D/d and hp/d could only coincide for rake angles over 30° and very low values of Ep/Es,
which would represent cases with no practical interest.

In order to confirm these observations and show that there is no significant influence on the seismic
response in the transition between values of h/hp smaller or greater than one, Figure 10 shows the180

maximum response Qm of a structure with h/b = 2 founded on a 2 × 2 pile group with inclined
elements. In this case (being b = s), the relationship between the ratio h/hp and the rake angle (also
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shown in the figure) can be expressed as h/hp = 4tanθ, in such a way that rake angles θ between
0°and 25°imply ratios h/hp from 0 to 1.865. Results for different values of 1/σ are depicted in this
figure. Even thought, for this configuration, a rake angle θ = 14°makes the height hp coincide with185

the height h of the vibrating mass (h/hp = 1), no change of trend in the seismic shear forces is found
for θ above or below 14°. Therefore, in the case of fixed pile-cap connections, this parameter h/hp
does not influence the behaviour of the system.
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Figure 9: Center of stiffness of 2× 2 pile groups with piles inclined with different rake angles and pile
spacing ratios. ξs = 0.05.

3.3 Elastic response spectra

In this section, for the purpose of illustrating the effects explained before, results in terms of effective190

system period T̃ /T and damping ξ̃ are used to build modified response spectra that include the
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and ξs = 0.05.

influence of pile rake angle θ. This way of representing the structural response has been previously
used by other authors such as Veletsos and Meek [2] or Avilés et al. [12].

Firstly, and only in order to verify the validity of the approach of an equivalent SDOF system for the
analysis of the seismic structural response, Fig. 11 allows to compare the plots of peak acceleration at195

the vibrating mass for the 3DOF system against the peak pseudo-acceleration of the equivalent SDOF
system, both as a function of its fixed-base fundamental period for the N-S component of the 1940
El Centro earthquake [34] and keeping 1/σ constant as by Veletsos and Meek [2]. In this figure, the
vertical and the horizontal axes represent the structural pseudo-acceleration Se/ag and the fixed-base
fundamental period T of the structure, respectively. For the sake of brevity, this study is performed200

only for superstructures with different slenderness ratios (h/b = 1, 2, 5, 10) supported on several 2× 2
pile groups with pile spacing ratios s/d = 3.75 and s/d = 15. Three different values have been taken
into account for the wave parameter: 1/σ = 0.1, 0.2, 0.3. In this case, the rake angle is considered to
be θ = 10°. For pile groups with L/d = 7.5 the results for the SDOF replacement oscillator reproduce
very closely those obtained for the complete system. Nevertheless, minor discrepancies can be observed205

when L/d = 30 and h/b = 1 and 2.
Secondly, Figure 12 presents elastic response spectra for different configurations of 2 × 2 pile

groups with inclined elements and with L/d = 7.5, L/d = 15 and L/d = 30, respectively. Foundation
halfwidth b, pile slenderness ratio L/d and pile-to-pile separation ratio s/d are kept constant for all
cases in the same row. The columns of the figure correspond to the cases with h/b = 10 · (1/σ) = 1,210

2 and 3 respectively. This correlation between h/b and 1/σ allows to keep the shear wave velocity
in the soil cs constant for all cases in a row. It can be seen that, when L/d = 7.5, the influence of
the rake angle increases with h/b. However, when L/d = 30 the influence of the rake angle becomes
more appreciable as h/b decreases, while no clear trend is apparent for L/d = 15. On the other
hand, the structural pseudo-acceleration tends to decrease for higher rake angles. This observation is215

rigorously true along the whole spectrum for h/b = 10 · (1/σ) = 1 and L/d = 7.5 and 15. In the other
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Figure 11: Elastic response spectra corresponding to the 1940 El Centro Earthquake for different 2×2
pile groups with piles inclined θ = 10°, Ep/Es = 1000 and ξs = 0.05. SDOF vs 3DOF.

cases, however, there exist values of the fixed-base fundamental period of the structure for which pile
inclination can be detrimental. As expected from the results shown in the previous sections, the more
slender the superstructure, the less systematic and significant are the beneficial effects of rake angle
on the structural response.220

Finally, in order to illustrate better the influence of structural height, Fig. 13 presents elastic
response spectra of the motion of the vibrating mass of two superstructures with slenderness ratios
h/b = 1 and 2, respectively and the same fundamental period T = 0.44 s. A clear reduction of the
spectral acceleration can be observed as the rake angle increases in both cases. These results are
coherent with those provided by Giannakou et al. [25].225

4 Conclusions

This paper presents an analysis of the influence of the rake angle of piles on the dynamic response of
pile-supported structures. To this end, a simple and accurate procedure based on a substructuring
model is used to obtain the maximum shear force at the base of the structure Qm (paying particular
attention to the differences among the values reached for Qm in relation to θ) of an SDOF equivalent230

system which reproduces the coupled system response within the range where the peak response
occurs. A BEM-FEM methodology is used in this paper to obtain the impedance functions and
kinematic interaction factors of all configurations under investigation.

Results for 24 different configurations are obtained. The main conclusions drawn from the analysis
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Figure 12: Elastic response spectra corresponding to the 1940 El Centro Earthquake for different 2×2
pile groups. Ep/Es = 1000 and ξs = 0.05.

of the results obtained for the cases under investigation are summarised below:235

• For short squat buildings, the effective period T̃ /T is reduced as the rake increases due to the
increment of the horizontal stiffness. However, for tall slender structures, T̃ /T generally increases
with the rake angle due to a reduction of the rocking impedance, except for close pile spacing.

• The increase of the rake angle leads to lower values of the maximum shear force at the base
of the structure Qm when h/b = 1 or h/b = 2. However, in the case of slender structures Qm240

increases with the rake angle.

• The variation of the relationship h/hp (between the height of the center of mass of the building
(or corresponding effective modal height h) and the height of the geometric point where the
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extension of the raked pile axes meet above the cap hp) above or below unity does not imply
a change of trend in the structural response presented in terms of maximum shear force at the245

base of a structure when a fixed pile-cap connection exists. This is due to the fact that, in that
case, the height D of the centre of stiffness of the pile group is not related to hp.

• In most cases, a reduction of the spectral acceleration can be observed as the rake angle in-
creases. However, the more slender the superstructure, the less systematic and significant are
the beneficial effects of rake angle on the structural response.250
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