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Abstract

This paper is concerned with the vibration isolation efficiency analysis of total or partially buried thin walled wave barriers in

poroelastic soils. A two-dimensional time harmonic model that treats soils and structures in a direct way by combining appropriately

the conventional Boundary Element Method (BEM), the Dual BEM (DBEM) and the Finite Element Method (FEM) is developed

to this aim. The wave barriers are impinged by Rayleigh waves obtained from Biot’s poroelasticity equations assuming a permeable

free-surface. The suitability of the proposed model is justified by comparison with available previous results. The vibration isolation

efficiency of three kinds of wave barriers (open trench, simple wall, open trench-wall) in poroelastic soils is studied by varying their

geometry, the soil properties and the frequency. It is found that the efficiency of these wave barriers behaves similarly to these in

elastic soils, except for high porosities and small dissipation coefficients. The efficiency of open trench-wall barriers can be evaluated

neglecting their walls if they are typical sheet piles. This does not happen with walls of bigger cross-sections, leading in general to

efficiency losses. Likewise, increasing the burial depth to trench depth ratio has a negative impact on the efficiency.
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1 Introduction

The vibrations induced by machinery or vehicles can travel through the soil to nearby constructions, which can annoy people or cause the malfunction

of devices located inside of these. In order to reduce the vibrations, a wave barrier can be installed at a point of the transmission path. The design

of each vibration isolation system depends on the source of vibrations, the properties of the transmission path, and the isolation requirements. An

open trench is a very efficient system because its stress-free boundaries act as perfect reflectors of elastic waves. Its efficiency greatly depends on

the ratio between the Rayleigh wavelength and the trench depth. However, for soil stability reasons, especially in water saturated soils, a pure open

trench can not be excavated to any desired depth. Thus, other systems such as in-filled trenches, or the installation of sheet piles or rows of piles,

are often used. Another option is reinforcing the open trench by installing retaining sheet piles or concrete walls on both sides of the trench. This

type of wave barrier is called an open trench-wall.

There exist a vast literature about the design and analysis of wave barriers. Before the numerical computing era, only experimental studies were

performed in order to assess these problems, where the works by Barkan [6] and Woods [34] blazed a trail. Nowadays, analytical, semi-analytical

and numerical methods, mainly the Boundary Element Method (BEM), are being used, although experimental methods are still being used to

confirm and/or parametrize mathematical models, e.g. [22]. Three kinds of wave barriers in elastic soils have been extensively studied: open and

in-filled trenches, and rows of piles. The open and in-filled trenches have been studied through two-dimensional BEM models by Emad et al. [19],

Beskos et al. [8, 26], and even formulas for a simplified design have been given by Ahmad et al. [2]. They were studied in three-dimensional

problems using BEM models by Banerjee et al. [5] and Dasgupta et al. [15]. The vibration isolation produced by rows of piles have been studied

by Avilés et al. [4] analytically, and by Kattis et al. [24] using a three-dimensional BEM model. The open trench-wall systems have been rarely

studied, to the authors’ knowledge only Tsai et al. [33] using a two-dimensional multidomain BEM model. When compared with elastic soils, much

less works dealing with the efficiency of wave barriers in poroelastic soils exist. Cai et al. [12, 11] and Xu et al. [35] studied the isolation efficiency

of rows of piles in poroelastic soils using semi-analytical methods, and Cao et al. [13] did the same for open trenches under a moving load. As it is

seen, the BEM has been widely applied to study these types of problems because of its own capability to deal with unbounded regions. The Finite

Element Method (FEM) has been used also, but mainly in combination with the BEM, being the FEM used for structural parts of the problem.

Among other coupled BEM-FEM models used in this field, those developed for the study of the isolation of vibrations produced by moving loads

(trains) are of great interest nowadays. To this end, the models developed by Andersen et al. [3] and François et al. [20] are great exponents.

The aim of this paper is twofold. Firstly, to present a two-dimensional BEM-FEM dynamic model for soil-structure interaction analyses, where

the structures are thin, and one or both of their faces can interact with the surrounding media. The initial idea of this model for fluid-structure

analyses has already been presented [10]. Here, the model is expanded by considering a Biot’s poroelastic surrounding medium. Secondly, to apply

the proposed model to study a problem of interest where there are clear advantages of its use: the efficiency of thin walled wave barriers buried in

this medium. For this study, three kinds of wave barriers are considered: open trench, simple barrier (thin in-filled trench), and open trench-wall;

which are impinged by a Rayleigh incident wave field assuming a permeable free-surface.
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The rest of the paper is organized as follows. The Biot’s poroelasticity model is briefly described in Section 2.1. In Section 2.2, the Rayleigh

waves on a permeable free-surface are discussed for this model. In section 2.3, the conventional BEM and the Dual BEM for the Biot’s poroelasticity

are presented. The soil-structure coupling conditions are described in Section 2.4. In Section 3.1, results obtained from the proposed model are

compared with published results. In Section 3.2, a study of the previously mentioned wave barriers under incident Rayleigh waves is presented.

2 Methodology

2.1 Biot’s poroelasticity

A very general representation of soils can be done by the Biot’s poroelasticity model [9]. This model is able to represent a two-phase medium

consisting of a solid frame saturated by a fluid. Let ui and τi j be the displacements and stresses of the solid phase, Ui and τ the displacements and

equivalent stress of the fluid phase, and i, j ∈ [1,2]. The governing equations in the time domain can be written as:

µ∇2u+∇
[(

λ +µ +Q2/R
)

(∇ ·u)+Q(∇ ·U)
]

+X = ρ11ü+ρ12Ü+b
(

u̇− U̇
)

(1)

∇ [Q(∇ ·u)+R(∇ ·U)]+X′ = ρ12ü+ρ22Ü−b
(

u̇− U̇
)

(2)

and the stress-strain relationships as:

τi j = δi j

[(

λ +Q2/R
)

(∇ ·u)+Q(∇ ·U)
]

+µ
(

ui, j +u j,i
)

(3)

τ = Q(∇ ·u)+R(∇ ·U) (4)

where X and X′ are the body forces of the solid and fluid phases, respectively, λ and µ are the Lamé’s parameters of the solid phase, Q and R are

the Biot’s coupling parameters, b is the dissipation constant, and ρ11 = (1− φ)ρs +ρa, ρ12 = −ρa, ρ22 = φρf +ρa, being φ the porosity, ρs the

solid phase density, ρf the fluid phase density, and ρa the additional aparent density. In the following, in order to avoid confusion, the subscripts 1

and 2 are used to denote solid phase and fluid phase variables, respectively, while x,y are used to denote coordinates.

Using the Helmholtz decomposition:

ux =
∂ϕ1

∂x
+

∂ψ1

∂y
, uy =

∂ϕ1

∂y
− ∂ψ1

∂x
, Ux =

∂ϕ2

∂x
+

∂ψ2

∂y
, Uy =

∂ϕ2

∂y
− ∂ψ2

∂x
(5)

and considering null body forces, two decoupled sets of two equations are obtained from Eqs. (1-2):

ϕ1,ϕ2







(

λ +2µ +Q2/R
)

∇2ϕ1 +Q∇2ϕ2 = ρ11ϕ̈1 +ρ12ϕ̈2 +b(ϕ̇1 − ϕ̇2) (6)

Q∇2ϕ1 +R∇2ϕ2 = ρ12ϕ̈1 +ρ22ϕ̈2 −b(ϕ̇1 − ϕ̇2) (7)

ψ1,ψ2

{

µ∇2ψ1 = ρ11ψ̈1 +ρ12ψ̈2 +b(ψ̇1 − ψ̇2) (8)

0 = ρ12ψ̈1 +ρ22ψ̈2 −b(ψ̇1 − ψ̇2) (9)

The first set is related with a rotational-free (P) displacement field due to scalar potentials ϕ1 and ϕ2, and the second set with a divergence-free (S)

displacement field due to scalar potentials ψ1 and ψ2. In the time harmonic regime, these equations lead to the three well known bulk modes of

wave propagation in Biot’s poroelasticity. Onwards, the circular frequency is denoted as ω , and the assumed time harmonic term is exp(iωt), which

is omitted for brevity. If only the time harmonic potentials ϕi = Pi exp(−ikPx) are considered, then the bulk P mode is obtained from:

P1,P2











[

ω2ρ̂11 −k2
P

(

λ +2µ +Q2/R
)]

P1 +
[

ω2ρ̂12 −k2
PQ
]

P2 = 0 (10)
[

ω2ρ̂12 −k2
PQ
]

P1 +
[

ω2ρ̂22 −k2
PR
]

P2 = 0 (11)

where ρ̂11 = ρ11 − ib/ω , ρ̂22 = ρ22 − ib/ω and ρ̂12 = ρ12 + ib/ω . The wavenumbers kP are obtained from its characteristic equation:

kP =± 1√
2

(

a1 ±
(

a2
1 −4a0

)1/2
)1/2

a1 = ω2

(

ρ̂22

R
+

ρ̂11 + ρ̂22Q2/R2 − ρ̂122Q/R

λ +2µ

)

, a0 = ω4 ρ̂11ρ̂22 − ρ̂2
12

R(λ +2µ)

(12)

where two of the solutions are relevant incoming waves (Re(kP)> 0). Hence, two P modes exist: the wavenumber associated with the fastest wave

speed is kP1, while the wavenumber associated with the slowest wave speed is kP2. If only the time harmonic potentials ψi = Si exp(−ikSx) are

considered, then the bulk S mode is obtained from:

S1,S2







[

ω2ρ̂11 −k2
Sµ
]

S1 +ω2ρ̂12S2 = 0 (13)

ω2ρ̂12S1 +ω2ρ̂22S2 = 0 (14)

and the wavenumber kS is obtained from its characteristic equation:

kS =±ω

(

ρ̂11 − ρ̂2
12/ρ̂22

µ

)1/2

(15)

where only one solution is a relevant incoming wave (Re(kS)> 0).
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2.2 Rayleigh waves on a permeable free-surface

The Rayleigh waves are surface waves that exist when a half-space is in contact with the vacuum through its free-surface. For a half-space y ≤ 0,

three different cases can be considered at the free-surface y = 0: permeable (τi jn j = 0, τ = 0), impermeable (τi j + τδi j)n j = 0, (U j −u j)n j = 0) or

partially permeable. In this paper, only the permeable case is considered.

The potentials for the surface mode are composed by unknown functions Ri = Ri(y) and a wave propagating in the positive x direction:

ϕi = R
(P)
i e−ikRx, ψi = R

(S)
i e−ikRx (16)

Once substituted into the governing equations, a set of four ordinary differential equations are obtained. It can be converted into a fourth order

equation in terms of R
(P)
1 , and a second order equation in terms of R

(S)
1 . The solution of the fourth order equation leads to:

R
(P)
1 = P11ekRP1y +P12ekRP2y (17)

R
(P)
2 = P21ekRP1y +P22ekRP2y = D1P11ekRP1y +D2P12ekRP2y

D j =
(λ +2µ)k2

P j −ω2 (ρ̂11 −Q/Rρ̂12)

ω2 (ρ̂12 −Q/Rρ̂22)

(18)

where the wavenumbers kRP j are obtained from:

kRPj =±
√

k2
R −k2

Pj (19)

being physically meaningful only those with Re(kRP j) > 0, i.e. those producing evanescent displacements when y → −∞. The solution of the

second order equation leads to:

R
(S)
1 = S1ekRSy (20)

R
(S)
2 = S2ekRSy =−ρ̂12/ρ̂22ekRSy (21)

where the wavenumber kS is:

kRS =±
√

k2
R −k2

S
(22)

being meaningful only that with Re(kRS)> 0. Therefore, the potentials are:

ϕi =
(

Pi1ekRP1y +Pi2ekRP2y
)

e−ikRx, ψi = Sie
kRSye−ikRx (23)

At this point, displacements and stresses can be written as functions of three amplitudes (P11, P12 and S1) and the Rayleigh wavenumber kR.

Applying the permeable boundary conditions τxy = 0, τyy = 0 and τ = 0 to the free-surface at y = 0, one obtains the following set of three equations:

[

−2µikRkRP1

]

P11 +
[

−2µikRkRP2

]

P12 +
[

µ
(

2k2
R −k2

S

)]

S1 = 0

[

2µk2
R − (N +QD1)k2

P1

]

P11 +
[

2µk2
R − (N +QD2)k2

P2

]

P12 +
[

2µikRkRS

]

S1 = 0
[

− (Q+RD1)k2
P1

]

P11 +
[

− (Q+RD2)k2
P2

]

P12 = 0

(24)

where N = λ +2µ +Q2/R. After some algebraic manipulations using the relationships between wavenumbers given by Eqs. (12), (15), (19) and

(22), the characteristic equation associated with this homogeneous set of equations can be written in a similar fashion than that of the elastic case

[1, Eq. (5.95)]:

(

2− r2
)2

−4
√

1− r2
(

H2

√

1−G1r2 −H1

√

1−G2r2
)

= 0 (25)

where:

r =
kS

kR
, H j =

[µ/(λ +2µ)]k2
S −k2

P j

k2
P1 −k2

P2

, G j =
k2

P j

k2
S

(26)

Eq. (25) is arranged in a new way which is more tractable than others previously obtained, e.g. [16, 36]. In fact, all terms are dimensionless, well

behaved, and depend only on the bulk wavenumbers and Lamé’s parameters. It is direct to verify that this equation collapse into the elastic equation;

if φ → 0, then kP1 → 0, kP2 → kelastic
P , kS → kelastic

S and (λ +2µ)/µ → (kelastic
S /kelastic

P )2.
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2.3 Conventional and Dual Boundary Element Method

The poroelastic soil region is treated numerically using the BEM. Two classes of region boundaries are considered: ordinary and crack-like. A

crack-like boundary is an oriented boundary composed by two boundaries sharing the same space but with opposite orientations. It represents the

idealization of a null thickness discontinuity within the region: a crack (void) or an inclusion. The BEM relies on the discretization of the Boundary

Integral Equations (BIE) used to build a solvable linear system of equations. The conventional BEM uses the Singular BIE (SBIE), and it is able to

deal with ordinary boundaries but not with crack-like boundaries. This occurs because identical SBIE are obtained when collocating them on the

crack-like boundary, leading to a singular linear system of equations. It can be solved by using the Dual BEM [23, 31] (DBEM) when collocating

on a crack-like boundary. The DBEM is a proper combination of the SBIE and the Hypersingular BIE (HBIE), which is commonly used for crack

analysis. However, in this work, it is used to couple a crack-like boundary with an elastic inclusion modeled as a structural member.

Cheng et al. [?] and Domı́nguez [?, 17] presented almost simultaneously an equivalent formulation of the Biot’s poroelasticity. However,

Domı́nguez’s weighted residual formulation is particularly handy as it has a clear connection to the well-known acoustic and elastodynamic formu-

lations. To the authors’ knowledge, only the SBIE has been treated so far, thus the HBIE and the DBIE are presented here with some detail.

Let Ω be a Biot poroelastic region, and Γ = ∂Γ its boundary with outward unit normal n. The SBIE for a collocation point xi not located at a

crack-like boundary can be written as [?, 17]:
[

Jci
00 0

0 ci
lk

]{

τ i

ui
k

}

+
∫

Γ

[−(U∗
n00 +JX ′∗

j n j) t∗0k

−U∗
nl0 t∗lk

]{

τ
uk

}

dΓ =
∫

Γ

[

−τ∗00 u∗0k

−τ∗l0 u∗lk

]{

Un

tk

}

dΓ

Ciui +

∫

Γ
T∗u dΓ =

∫

Γ
U∗t dΓ

(27)

where indicial notation l,k ∈ [1,2] with summation convention is used, and body forces has been neglected. The secondary variables at the boundary

are the fluid normal displacement Un =Uknk and the solid traction tl = τlknk. The vector u contains all the primary variables, while t contains all

the secondary variables. The fundamental solution matrix U∗ was obtained by Dominguez [17] using the Kupradze procedure [25], and was written

in a compact form. However, in order to ease the developments done in the present work, we follow the idea of Maeso et al. [28] of writing the

fundamental solution separately in a way that resembles the fundamental solutions of acoustics and elastodynamics:

τ∗00 =
1

2π
η, η =

1

k2
1 −k2

2

[

α1K0 (ik1r)−α2K0 (ik2r)

]

, α j = k2
j −

µ

λ +2µ
k2

3 (28)

u∗0k =− 1

2π
Θr,k, Θ =

(

Q

R
−Z

)

1

λ +2µ

1

k2
1 −k2

2

[

ik1K1 (ik1r)− ik2K1 (ik2r)

]

(29)

τ∗l0 =
1

2πJ
Θr,l (30)

u∗lk =
1

2πµ

(

ψδlk −χr,lr,k

)

ψ = K0 (ik3r)+
1

ik3r
K1 (ik3r)− 1

k2
1 −k2

2

[

β1
1

ik1r
K1 (ik1r)−β2

1

ik2r
K1 (ik2r)

]

χ = K2 (ik3r)− 1

k2
1 −k2

2

[

β1K2 (ik1r)−β2K2 (ik2r)

]

, β j =
µ

λ +2µ
k2

j −
k2

1k2
2

k2
3

(31)

where r = |x−xi| is the distance between collocation and observation points, k1 = kP1, k2 = kP2, k3 = kS, J = 1/(ρ̂22ω2), Z = ρ̂12/ρ̂22, and Kn (z)
is the modified Bessel function of the second kind, order n and argument z. By doing so, the fundamental solution matrix U∗ is composed by four

submatrices: 00, 0k, l0 and lk; where the first index is associated with the load and the second index with the observation, being 0 associated with

the fluid phase and l,k with the solid phase. Also, the diagonal submatrices 00 and lk have the same kind of singularities as the well known acoustics

and elastodynamic problems, respectively. In fact, the free-terms ci
00 and ci

lk are completely similar to that problems. The off-diagonal submatrices

0k and l0 associated with the coupling between phases have one lower order of singularity than the diagonal submatrices. Using Eqs. (2), (3) and

(4), the fundamental solution matrix T∗ can be obtained from:

U∗
n00 +JX ′∗

j n j =−Jτ∗00, jn j −Zu∗0jn j (32)

t∗0k =

[

λu∗0m,mδkj +µ
(

u∗0k,j +u∗0j,k

)

]

n j +
Q

R
τ∗00nk (33)

U∗
nl0 =−Jτ∗l0, jn j −Zu∗ljn j (34)

t∗lk =

[

λu∗lm,mδkj +µ
(

u∗lk,j +u∗lj,k
)

]

n j +
Q

R
τ∗l0nk (35)

which again can be written in a way that resembles the corresponding fundamental solutions of acoustics and elastodynamics, see A. The HBIE is

obtained by establishing the secondary variables at the collocation point, which requires the SBIE and its derivatives with respect to the coordinates

of the collocation point:

U i
n =U i

jn
i
j =−Jτ i

, jn
i
j −Zui

jn
i
j (36)

t i
l = τ i

l jn
i
j =
[

λui
m,mδlj +µ

(

ui
l, j +ui

j,l

)]

ni
j +

Q

R
τ ini

l (37)
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where ni is the unit normal at the collocation point, and the comma notation denotes ∂/∂xi
k

instead of the usual ∂/∂xk that is used in the rest of

the paper. When considering a collocation point located at a boundary, corner points are excluded in order to avoid multivalued ni, thus Γ(xi) ∈ C 1

holds for the HBIE. Therefore, the HBIE can be written as:

ci

[

1 0

0 δlk

]{

U i
n

t i
k

}

+

∫

Γ

[

−s∗00 s∗0k

−s∗l0 s∗lk

]{

τ
uk

}

dΓ =

∫

Γ

[

−d∗
00 d∗

0k

−d∗
l0 d∗

lk

]{

Un

tk

}

dΓ

Citi +
∫

Γ
S∗u dΓ =

∫

Γ
D∗t dΓ

(38)

where again the diagonal submatrices of D∗ and S∗ and the free-term resemble those of acoustics and elastodynamic problems. The matrices D∗

and S∗ are written in A. When xi ∈ Γ, both the SBIE and the HBIE contain singular integrals, being at most weakly singular those associated with

U∗, at most strongly singular (Cauchy Principal Value integrals) those associated with T∗ and D∗, and at most hypersingular (Hadamard Finite

Part integrals) those associated with S∗. The treatment of those integrals for this problem is analogous to that of acoustics [10] and elastodynamics

[32, 14] problems. The treatment of the HBIE is based on a regularization process that requires the integrands (excluding the term r−2) belong to

the Hölder function space C 1,α [29]. To do so, the collocation point must be in a boundary point where the primary variables are continuous, i.e.

ui ∈ C 1.

The SBIE and HBIE shown in Eqs. (27) and (38), respectively, are valid for a collocation point located inside or outside the domain, and at an

ordinary boundary, with the condition that Γ(xi) ∈ C 1 and ui ∈ C 1 for the HBIE. However, for a collocation point located at a crack-like boundary,

the BIEs have to be modified. A crack-like boundary is composed by two sub-boundaries, denoted as positive + and negative − faces. Hence, the

integration domain associated with a crack-like boundary can be divided into these two faces, which are geometrically coincident but have opposite

orientations. Taking into account this, the BIEs for a collocation point located at a crack-like boundary can be built using a limit to the boundary

approach, see e.g. [10]. In this case, the SBIE and HBIE can be written as:

1

2

[

J 0

0 δlk

]

(

ui++ui−
)

+

∫

Γ
T∗u dΓ =

∫

Γ
U∗t dΓ (39)

1

2

[

1 0

0 δlk

]

(

ti+− ti−
)

+
∫

Γ
S∗u dΓ =

∫

Γ
D∗t dΓ (40)

where it has been assumed that Γ(xi) ∈ C 1 for both equations. Since each face has its own set of variables, (ui+, ti+) for the positive face and

(ui−, ti−) for the negative face, and its own boundary conditions, two linearly independent BIEs are needed. By examining Eqs. (39) and (40), it is

clear that neither the SBIE nor the HBIE are able to give independently enough conditions. Using both BIEs is the only way to directly get linearly

independent equations for a crack-like boundary. Consequently, Eqs. (39) and (40) are called Dual BIEs [23], and their application to the BEM is

called the Dual BEM [31].

In this work, the discretization of the BIEs is performed using quadratic elements. For ordinary boundaries, the SBIE is used in the conventional

way using nodal collocation for all nodes, except at corner points where double nodes with non-nodal collocation are applied. For crack-like

boundaries, the Dual BIEs are used applying the Multiple Collocation Approach [10, 21]. The Rayleigh incident field defined in Section 2.2 is

introduced into the model by formulating the BIEs in terms of the scattered field [18].

2.4 Soil-structure coupling

The conventional BEM and the Dual BEM used to treat the poroelastic soil region, together with the structural FEM model of thin structures,

and the appropriate coupling conditions, make possible building a general BEM-FEM model of soils interacting with plate-like structures. In this

two-dimensional approach, thin structures of infinite depth are assumed, hence an equivalent two-dimensional beam model with a modified Young’s

modulus Em/(1−ν2) can be used.

The beam finite element has been already described [10, 30], but a brief summary is given here for the sake of completeness. Let’s consider

an elastic material with Young’s modulus Em, Poisson’s ratio ν , and hysteretic damping coefficient ξ . Then, the effective beam Young’s modulus

including the hysteretic damping is E = Em(1+ i2ξ )/(1−ν2). The beam is straight, with a cross-section defined by its area A and its inertia I, and

follows the Euler-Bernoulli beam theory with added rotational inertia. It has three nodes and eight degrees of freedom: vertex nodes i = 1,2 have

translation u
(i)
1 ,u

(i)
2 and rotation θ (i), while the central node i = 3 has only translation u

(3)
1 ,u

(3)
2 . Axial and lateral quadratic distributed loads over

each element are considered, being their nodal values s′1
(i)

and s′2
(i)

, respectively. By doing so, a node-by-node correspondence between the beam

finite element and the quadratic boundary element is achieved. Therefore, the element-wise FEM equation is:
(

K−ω2M
)

·u = Q · s′ (41)

where u is the vector of kinematic variables in global coordinates, s′ is the vector of distributed loads in local coordinates, K and M are the stiffness

and mass matrices in global coordinates, respectively, and Q is the load matrix that converts distributed loads in local coordinates into equivalent

nodal forces and moments in global coordinates.

The beam finite element can be coupled with an ordinary boundary element (BEM-FEM coupling) or with a crack-like boundary element

(DBEM-FEM coupling), see Fig. 1. Let ϒs
j be a beam finite element belonging to a elastic region Ωs, and x′1,x

′
2 its local axis. Let Γ be a boundary

(ordinary or crack-like) of a poroelastic region Ωp, being the orientation of Γ defined by its outward unit normal vector n, and ϒ j a boundary element

of that boundary. Assuming an impermeable interface with perfect bonding between Γ and ∂Ωs, the coupling conditions when Γ is an ordinary

boundary consist of the following compatibility and equilibrium equations:

U
(i)
n = u

(i)
k

nk (42)

u
(i)
l

= u
(is)
l

(43)

τ(i)nl + t
(i)
l

+ s′1
(is)

x′1l + s′2
(is)

x′2l = 0 (44)
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Figure 1: Types of coupling. Left: poroelastic ordinary boundary element - beam finite element (BEM-FEM coupling). Right:

poroelastic crack-like boundary element - beam finite element (DBEM-FEM coupling).

where indicial notation l,k ∈ [1,2] with summation convention is used, and i is the local index of a node. The coupling conditions when Γ is a

crack-like boundary consist of the following compatibility and equilibrium equations:

U
(i+)
n = u

(i+)
k

nk (45)

U
(i−)
n =−u

(i−)
k

nk (46)

u
(i+)
l

= u
(is)
l

(47)

u
(i−)
l

= u
(is)
l

(48)

τ(i+)nl + t
(i+)
l

− τ(i−)nl + t
(i−)
l

+ s′1
(is)

x′1l + s′2
(is)

x′2l = 0 (49)

If, instead of a poroelastic soil, an elastic soil or an inviscid fluid is considered, these coupling equations lead directly to the appropriate ones by

simply removing the equations and variables that do not exist in that kind of medium.

3 Results and discussion

3.1 Comparison with published results

To the authors’ knowledge, there are not any published results where directly validate the proposed numerical approach. However, is possible to

compare it with published results obtained by other models sharing some aspects. Thereby, in this section it is compared with the classical vibration

isolation paper by Beskos et al. [8].

Beskos et al. [8] studied the vibration isolation of open and filled trenches using a two-dimensional conventional BEM elastodynamic model.

The problem under consideration is a trench, open or filled with concrete, with a depth to width ratio d/w = 10, impinged by waves coming from

a footing 5d behind the trench, vibrating with a frequency corresponding to a Rayleigh wavelength λR equal to the depth d. The elastic soil has

a density ρ = 1785 kg/m3, shear modulus µ = 132 MPa, Poisson’s ratio ν = 0.25 and hysteretic damping ξ = 0.03. The equivalent poroelastic

soil used in our model has a porosity φ = 0.001, fluid density ρf = 0.001 kg/m3 , solid density ρs = 1785 kg/m3, null additional apparent density,

solid Lamé’s parameters µ = λ = 132 MPa, solid phase hysteretic damping ξs = 0.03, Biot’s parameters R = Q = 0.1 MPa, and null dissipation

coefficient. The concrete for the filled trench barrier has a density ρ = 2449 kg/m3, shear modulus µ = 4.52628 GPa, Poisson’s ratio ν = 0.25 and

hysteretic damping ξ = 0.15. Fig. 2 shows a comparison between their results and our results using the vertical displacement amplitude reduction

ratio Ay:

Ay(x) =

∣

∣uy (x,y = 0)
∣

∣

∣

∣uno barrier
y (x,y = 0)

∣

∣

(50)

For the open trench, we have used an open trench with d/w = 10 using a conventional BEM model, but also an open trench with the null width

assumption (d/w → ∞) using the Dual BEM. For the filled trench, we have used a filled trench with d/w = 10 using a conventional multidomain

BEM model, and also a filled trench using our DBEM-FEM model, i.e. from the soil point of view the trench has null thickness but preserves its

structural behaviour. There exist differences between the results of Beskos et al. and our results, although the main tendencies are similar. It is

probably due to the fact that they used constant boundary elements and an important truncation of the free-surface mesh, which was also noticed by

Ahmad et al. [2]. In both problems, the differences between the results using the real geometry (conventional BEM) and the results using the null

width assumption (DBEM) are very small. Therefore, it is justified using the proposed DBEM-FEM model for thin structures (d/w ≥ 10) in these

kinds of problems.
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Figure 2: Comparison with Beskos et al. [8]
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Figure 3: Problems layout. Left: open trench. Center: simple wall. Right: open trench-wall.

3.2 Wave barriers in poroelastic soils

Three kinds of wave barrier systems are studied: open trench, simple wall and open trench-wall; see Fig. 3. An open trench system is defined by

its depth d and width w. Qualitatively, it acts as a perfect reflector where surface waves having a wavelength less than its depth are filtered out.

A pure open trench is the perfect solution, however, systems using walls are needed in situations where the soil stability is compromised. In this

study, we consider a wall characterized by its top view cross-section per unit length, see Fig. 4. It is defined by the total width h and the wall

thickness t, being t ≤ h. Hence, the cross-section area is A = t and the inertia is I = t3/12+ t(h/2− t/2)2 . When t = h, it represents exactly a plate

with uniform cross-section. When t < h, it represents a two-dimensional simplified version of a sheet pile, whose three-dimensional geometry and

structural behaviour as a transversely isotropic plate are neglected. This simplification is valid as long as we are interested in far-field variables.

A simple wall barrier system is defined by its depth d and wall cross-section. An open trench-wall system is defined by its trench depth d, trench

width w, wall cross-section, and wall burial depth l. Hence, these problems are defined by their geometry: d, w, l, h and t; by the properties of their

regions: poroelastic soil (φ , ρf, ρs, µs, λs, ξs, Q, R, ρa, b) and wall (ρb, Eb, νb, ξb); and by the frequency ω .

For elastic soils, the open trench and the simple wall problems have been extensively studied, whereas the open trench-wall system has been

rarely studied [33]. In these cases, each problem is easily nondimensionalized to a small set of parameters of general applicability. Basically, ratios

of lengths (d/w, d/h, etc.), Poisson’s ratios of the soil νs and wall νb, ratios of densities ρs/ρb and Young’s modulus Es/Eb between soil and wall,

and a dimensionless frequency ω∗ defined by using the Rayleigh wave speed and some length, for example d. However, such a broad study for

poroelastic soils is difficult due to the number of properties involved, and the question if a set of values for these properties represents an existing

soil or not.

Therefore, in order to obtain realistic results of practical usage, we limit our study to water-saturated sandstones whose properties are based on

experimental data. The poroelastic approximation of water-saturated sandstones is taken from [27], although a more general dissipative soil (b 6= 0)

x
′

z
′

1 m

h

t

Figure 4: Wall cross-section

7



is considered here. The main hypothesis is the linear relationship between porosity φ and solid dry bulk modulus Ks:

Ks = Kcr +

(

1− φ

φcr

)

(

Kg −Kcr

)

(51)

where Kcr = 200MPa is the critical bulk modulus for the dry frame, φcr = 0.36 is the critical porosity and Kg = 36000MPa is the bulk modulus

of a solid grain. The critical porosity φcr is the point where the porosity is too large to form a sustainable dry frame. Several porosities and

Poisson’s ratios are considered: φ = {0.10,0.20,0.30} and νs = {0.20,0.30,0.40}. Thus, Lamé parameters are λs = (3νs)/(1+ νs)Ks and µs =
[3(1− 2νs)]/[2(1+ νs)]Ks. The density of the solid phase is ρs = 2650kg/m3 , and the damping ratio is null (ξs = 0). The fluid phase (water)

properties are Kf = 2000MPa and ρf = 1000kg/m3 . The Biot’s coupling parameters Q and R are:

Q = φ
1−φ −Ks/Kg

(1−φ −Ks/Kg)+φKg/Kf

Kg, R =
φ2

(1−φ −Ks/Kg)+φKg/Kf

Kg (52)

Berryman’s model for the additional aparent density [7] is used assuming spherical grains: ρa = (1− φ)ρf/2. The dissipation coefficient is b =
ρfgφ2/κ , where κ is the hydraulic conductivity. In order to present a dimensionless problem, a dimensionless dissipation coefficient b∗ = bd/

√
µsρ

is defined, where ρ = φρf +(1− φ)ρs is the bulk density. Also, it is necessary to use a dimensionless frequency ω∗. One representing the ratio

between the barrier system depth and the Rayleigh wavelength ω∗ = d/λR0 = (ωd)/(2πcR0) is defined, where cR0 is the wave speed of the

Rayleigh waves assuming b = 0. Assuming a typical barrier depth d ∼ 5 m, and taking into account that κ ∈ [10−6,10−2] m/s (see [27, Fig. 1]),

φ ∈ [0.10,0.30] and ν ∈ [0.20,0.40], an appropriate set of values for the dimensionless dissipation coefficient is b∗ = {0,0.2,5,100,2000}. For the

dimensionless frequency, a suitable range ω∗ ∈ [0.5,1.5] is used. The thin walls are considered made of steel: ρb = 7850kg/m3 , Eb = 210GPa,

νb = 0.30, ξb = 0.05.

All the boundaries in contact with air are considered permeable, and given that the bulk modulus of the air is much more lower than any of the

porous media, the fluid dynamic stress τ and the solid stresses τi j can be considered null at those boundaries. Specifically, these boundaries are the

free-surface of the half-space and the bottom of the open trench-wall.

The isolation efficiency of each configuration is measured by using the average vertical displacement amplitude reduction ratio Āy:

Āy =
1

10λR0 −a/2

∫ 10λR0

a/2
Ay(x) dx (53)

where a = w for the open trench and open trench-wall, and a = 0 for the simple barrier. It synthesizes the behaviour of Ay(x) along the shadow zone

of the wave barrier up to 10λR0, as suggested by Ahmad et al. [2].

3.2.1 Open trench

Three geometrical configurations of the open trench are studied: d/w = {1,2,10}; which correspond to a very wide, wide and narrow open trenches,

respectively. Although it does not use any of the new features proposed here, it is mandatory since, to the authors’ knowledge, previous results

about this problem does not exist in the literature.

Fig. 5 shows Āy response for the ranges of variation of porosity φ , Poisson’s ratio νs, dimensionless dissipation coefficient b∗, and dimensionless

frequency ω∗, for the wide trench (d/w = 2). The main behaviour of open trenches in poroelastic soils are similar to those in elastic soils. The

dimensionless frequency ω∗ = d/λR = 1 is a key point. Below this frequency, the efficiency gets worse increasingly, and above it, the efficiency

improves up to a maximum efficiency, approximately constant for ω∗ > 1.2. In most cases, the Poisson’s ratio has a small influence on Āy when

ω∗ > 0.8. It becomes more important when the porosity is near φcr and the dimensionless dissipation coefficient is b∗ < 1. The dimensionless

dissipation coefficient b∗ has a very small influence on Āy for b∗ > 5. For b∗ < 5, b∗ becomes more influential when the porosity approaches φcr.

Fig. 6 shows Āy responses for the different d/w ratios, when νs = 0.30 and b∗ ≤ 5. In general terms, the smaller d/w ratio the more efficient is

the open trench, which is physically obvious. The influence of d/w increases as ω∗ decreases, especially when ω∗ < 0.6. When ω∗ > 1.2, although

differences exist, they are less important given the high efficiency (Āy < 0.05) of all the studied d/w ratios. The influence of the porosity φ and the

dissipation coefficient b∗ is similar for the different studied d/w ratios.

3.2.2 Simple barrier

The simple barrier is studied for three depth to cross-section width ratios: d/h = {10,20,100}; and each of them for four cross-section width to wall

thickness ratios: h/t = {1,6,10,20}. Except for the average efficiency level, which is much more lower, the influence of soil properties over the Āy

response for simple barriers are similar to those of open trenches. Therefore, in order to compare the influence of the wall configuration, the soil

properties are fixed to: φ = 0.20, b∗ = 0.2, νs = 0.30. These problems are solved using the proposed DBEM-FEM coupling. Hence, the soil sees

a null thickness barrier which maintains its effective structural response. Additionally, the real three-dimensional behaviour of cross-sections with

h/t 6= 1 is approximated by a two-dimensional behaviour, which is a valid assumption as long as we are not concerned about near-field variables.

Fig. 7 shows Āy response for different d/h and h/t ratios. For the studied range of ω∗, the efficiency of the simple barrier is much more lower

than the efficiency of any open trench. While the open trench acts as a perfect reflector, the simple barrier partially converts surface waves into

body waves. As pointed out by Ahmad et al. [2], the efficiency of this type of barriers depends mostly on the wall area d · t. In order to show this

relationship for the present study, Fig. 8 has been built using the Āy analysis points of all cases shown in Fig. 7 in ordinates, and a dimensionless

area (d/λR0)(t/λR0) = (ω∗)2(h/d)(t/h) in abscissas. The left graph shows a global picture of the results, and the right graph shows a detailed

view of the results for smaller cross-sections. Although the observed slope is different for each specific cross-section, it is shown that, as found by

Ahmad et al., a roughly linear relationship exists between the efficiency and the dimensionless area.
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Ā
y

0.3

0.2

0.1

0.0

φ= 0.30, b∗
= 5φ= 0.20, b∗

= 5φ= 0.10, b∗
= 5

Ā
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Figure 5: Āy response for open trench d/w = 2
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3.2.3 Open trench-wall

The open trench-wall is studied for three depth to width ratios: d/w = {1,2,10}; three wall burial depth to trench depth ratios: l/d = {0,0.25,0.50};

three trench depth to cross-section width ratios: d/h = {10,20,100}; and four cross-section width to wall thickness ratios: h/t = {1,6,10,20}.

The influence of the dimensionless dissipation coefficient b∗ and the Poisson’s ratio νs is similar to that of the open trenches, i.e. their influence is

relatively small, thus b∗ = 0.2 and νs = 0.30 are assumed. These problems are solved using both the BEM-FEM and DBEM-FEM couplings, being

the BEM-FEM coupling applied to the retaining part of walls, and the DBEM-FEM coupling applied to the buried part of the walls.

Fig. 9 has been built in order to assess the influence of the wall and its burying in the soil over Āy. For all cases, the depth to cross-section width

ratio is d/h = 20, and the cross-section width to wall thickness ratio is h/t = 1. The figure contains 3×3 graphs, where each column corresponds to

a different porosity φ , and each row to a different depth to width d/w ratio. Each graph contains four curves corresponding to the open trench case

and the open trench-wall case with three different wall burial depth to trench depth l/d ratios. For a given φ and d/w ratio, the differences between

the open trench and the open trench-wall for l/d = 0 are small for ω∗ > 1, but for ω∗ < 1 the open trench-wall is slightly more efficient. For the

other values of the l/d ratio, Āy gets worse, especially for ω∗ < 1. The smaller the porosity, the smaller Āy differences between the open trench and

the open trench-wall for any l/d ratio. Likewise, the smaller the d/w ratio, the smaller the Āy differences between both kinds of wave barriers.

Fig. 10 contains graphs comparing the Āy response of configurations with different l/d ratios and different cross-sections. For all cases, the

porosity is φ = 0.20, and the depth to width ratio is d/w = 2. Each column corresponds to a different d/h ratio, and each row correspond to a

different l/d ratio. Four curves are drawn on each graph, one corresponding with the open trench, and three corresponding with h/t = {1,6,20}.

It is seen that the open trench-wall converges to the open trench as d/h and h/t increase, as it should be. The cross-sections corresponding with

a plate with uniform thickness (h/t = 1) have a considerable impact on Āy, increasing the efficiency for ω∗ < 1 and l/d = 0, but decreasing it in

the rest of the cases. The cross-sections associated with the sheet pile idealization have a small influence on the efficiency when compared with the

open trench.

4 Conclusions

It has been developed a two-dimensional time harmonic model combining the BEM and the FEM for the isolation efficiency analysis of total or

partially buried thin walled wave barriers in poroelastic soils. The SBIE and the HBIE needed for the conventional BEM and the Dual BEM

for poroelastic regions have been obtained. Also, we describe the coupling conditions between a beam finite element and an ordinary boundary

(BEM-FEM), and between a beam finite element and a crack-like boundary (DBEM-FEM), being the latter a new type of coupling element. The

considered ground vibrations are Rayleigh waves propagating on a permeable free-surface, which have been obtained, and whose characteristic

equation is written is simple new form.

The open trench, simple wall and open trench-wall are studied varying their geometry, soil properties and frequency. The soil is assumed to

be a sandstone following a linear relationship between porosity and solid dry bulk modulus. In the study, several values of porosity φ , Poisson’s

ratio νs and dimensionless dissipation coefficient b∗ are considered. From the point of view of isolation efficiency of all wave barriers, it is found

that the porosity φ is relevant when is near the critical porosity φcr and the dimensionless dissipation coefficient is b∗ < 5. Also, results do not vary
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Figure 10: Āy comparison between open trench and open trench-wall for different d/h, l/d and h/t ratios (φ = 0.20, b∗ = 0.2,

νs = 0.30, d/w = 2)

significantly beyond b∗ > 5, and Poisson’s ratio νs becomes relevant only for dimensionless frequency ω∗ < 0.8. Qualitatively, the open trench

and the simple wall (thin in-filled trench) behave similarly to those in elastic soils, except for high porosities and small dimensionless dissipation

coefficients. For the evaluation of the isolation efficiency of an open trench-wall, it is found that the influence of the walls can be ignored if they

are typical sheet piles, and if the dimensionless frequency ω∗ lies between 0.5 and 1.5. This is not the case when walls with bigger cross-sections

are used, leading in general to an efficiency loss. Wall burial depths l/d > 0 lead to efficiency losses, especially for high porosities and low

dimensionless frequencies ω∗ < 1.
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A Fundamental solution matrices T∗, D∗ and S∗

Elements of the fundamental solution matrix T∗:

U∗
n00 +JX ′∗

j n j =
1

2π
W0

∂ r

∂n
(54)

W0 =

(

ZΘ −J
∂η

∂ r

)

(55)

t∗0k =
1

2π

[

T01r,k
∂ r

∂n
+T02nk

]

(56)

T01 =−2µ

(

∂Θ

∂ r
− 1

r
Θ

)

(57)

T02 =−λ

(

∂Θ

∂ r
+

1

r
Θ

)

−2µ
1

r
Θ +

Q

R
η (58)
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U∗
nl0 =

1

2πµ

[

W1r,l
∂ r

∂n
+W2nl

]

(59)

W1 = Zχ −µ

(

∂Θ

∂ r
− 1

r
Θ

)

(60)

W2 =−Zψ −µ
1

r
Θ (61)

t∗lk =
1

2π

[

T1r,lr,k
∂ r

∂n
+T2

(

∂ r

∂n
δlk + r,knl

)

+T3r,lnk

]

(62)

T1 =−2

(

∂ χ

∂ r
− 2

r
χ

)

(63)

T2 =
∂ψ

∂ r
− 1

r
χ (64)

T3 =
λ

µ

(

∂ψ

∂ r
− ∂ χ

∂ r
− 1

r
χ

)

− 2

r
χ +

Q

RJ
Θ (65)

Elements of the fundamental solution matrix D∗:

d∗
00 =

1

2πJ
W0

∂ r

∂ni
(66)

d∗
0k =

1

2πµ

(

−W1r,k
∂ r

∂ni
+W2ni

k

)

(67)

d∗
l0 =

1

2πJ

(

−T01r,l
∂ r

∂ni
+T02ni

l

)

(68)

d∗
lk =

1

2π

[

T1r,lr,k
∂ r

∂ni
−T2

(

− ∂ r

∂ni
δlk + r,ln

i
k

)

−T3r,kni
l

]

(69)

Elements of the fundamental solution matrix S∗:

s∗00 =
1

2π

[

Q1
∂ r

∂n

∂ r

∂ni
+Q2n jn

i
j

]

(70)

Q1 =
Z2

µ
χ −2Z

(

∂Θ

∂ r
− 1

r
Θ

)

+J

(

∂ 2η

∂ r2
− 1

r

∂η

∂ r

)

(71)

Q2 =
Z2

µ
ψ +2Z

1

r
Θ −J

1

r

∂η

∂ r
(72)

s∗0k =
1

2π

{

S01r,k
∂ r

∂n

∂ r

∂ni
+S02nk

∂ r

∂ni
+S03

[

ni
k

∂ r

∂n
+ r,kn jn

i
j

]}

(73)

S01 =−2Z

(

∂ χ

∂ r
− 2

r
χ

)

−2µ

[

−∂ 2Θ

∂ r2
+

3

r

(

∂Θ

∂ r
− 1

r
Θ

)]

(74)

S02 = Z

[

λ

µ

(

∂ψ

∂ r
− ∂ χ

∂ r
− 1

r
χ

)

− 2

r
χ

]

+λ

[

∂ 2Θ

∂ r2
+

1

r

(

∂Θ

∂ r
− 1

r
Θ

)]

+2µ
1

r

(

∂Θ

∂ r
− 1

r
Θ

)

+
Q

RJ

(

ZΘ −J
∂η

∂ r

)
(75)

S03 =−Z

(

∂ψ

∂ r
− 1

r
χ

)

−2µ
1

r

(

∂Θ

∂ r
− 1

r
Θ

)

(76)

s∗l0 =
1

2π

{

−S01r,l
∂ r

∂n

∂ r

∂ni
+S02ni

l

∂ r

∂n
−S03

[

−nl
∂ r

∂ni
+ r,ln jn

i
j

]}

(77)

s∗lk =
µ

2π

{

S1

[

r,ln
i
k

∂ r

∂n
− r,knl

∂ r

∂ni
− ∂ r

∂n

∂ r

∂ni
δlk + r,kr,ln jn

i
j

]

+S2

(

r,kni
l

∂ r

∂n
− r,lnk

∂ r

∂ni

)

+S3r,lr,k
∂ r

∂n

∂ r

∂ni

+S4

[

n jn
i
jδlk +nln

i
k

]

+ S5nkni
l

}

(78)
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S1 =−∂ 2ψ

∂ r2
+

1

r

(

∂ψ

∂ r
+3

∂ χ

∂ r
− 6

r
χ

)

(79)

S2 = 2
λ

µ

[

−∂ 2ψ

∂ r2
+

∂ 2χ

∂ r2
+

1

r

(

∂ψ

∂ r
− 2

r
χ

)]

+
4

r

(

∂ χ

∂ r
− 2

r
χ

)

− 2Q

RJ

(

∂Θ

∂ r
− 1

r
Θ

)

(80)

S3 = 4

[

−∂ 2χ

∂ r2
+

1

r

(

5
∂ χ

∂ r
− 8

r
χ

)]

(81)

S4 =−2

r

(

∂ψ

∂ r
− 1

r
χ

)

(82)

S5 =
λ 2

µ2

[

−∂ 2ψ

∂ r2
+

∂ 2χ

∂ r2
+

1

r

(

−∂ψ

∂ r
+2

∂ χ

∂ r

)]

− λ

µ

4

r

(

∂ψ

∂ r
− ∂ χ

∂ r
− 1

r
χ

)

+
4

r2
χ

+
Q

R

1

J

[

−2
λ

µ

(

∂Θ

∂ r
+

1

r
Θ

)

− 4

r
Θ +

Q

Rµ
η

]
(83)
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